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We investigate multivariate bootstrap procedures for general stabilizing
statistics, with specific application to topological data analysis. The work re-
lates to other general results in the area of stabilizing statistics, including cen-
tral limit theorems for geometric and topological functionals of Poisson and
binomial processes in the critical regime, where limit theorems prove difficult
to use in practice, motivating the use of a bootstrap approach. A smoothed
bootstrap procedure is shown to give consistent estimation in these settings.
Specific statistics considered include the persistent Betti numbers of Čech
and Vietoris-Rips complexes over point sets in Rd, along with Euler charac-
teristics, and the total edge length of the k-nearest neighbor graph. Special
emphasis is given to weakening the necessary conditions needed to establish
bootstrap consistency. In particular, the assumption of a continuous underly-
ing density is not required. Numerical studies illustrate the performance of
the proposed method.

1. Introduction. In recent years, a multitude of topological statistics have been devel-
oped to describe and analyze the structure of data, achieving notable success. These methods
have seen application in astrophysics [1, 44, 45, 46], cancer genomics [3, 23, 11], medical
imaging [19], materials science [31], fluid dynamics [32] and chemistry [55], and other wide
ranging fields.

The use of simplicial complexes to summarize geometric and topological properties of data
culminates in the techniques of persistent homology. Summary statistics based on persistent
homology, persistent Betti numbers, persistence diagrams, and derivatives thereof effectively
extract essential topological properties from point cloud data. A broad introduction to the
methods of topological data analysis can be found in [54, 16].

While the use of such statistics has seen wide success, very little is currently known about
the statistical properties of these topological summaries. An initial attempt at statistical anal-
ysis using persistent homology can be seen in [10], with the later introduction of persistence
landscapes in [9]. Likewise, central limit theorems have been developed for persistence land-
scapes [14], Betti numbers [57] and persistent Betti numbers [29, 34] under a variety of
asymptotic settings. However, the form of these results is insufficient to provide for valid
confidence intervals.
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For the construction of asymptotically valid confidence intervals, subsampling and boot-
strap estimation have proven successful. In [25], various techniques are given for construct-
ing confidence sets for persistence diagrams and derived statistics, including persistence di-
agrams generated from sublevel sets of the density function, as well as for the Čech and
Vietoris-Rips complexes of data constrained to a manifold embedded in Rd. In [14, 15],
bootstrap consistency is established very generally for persistence landscapes drawn from in-
dependently generated point clouds in Rd, assuming that the number of independent samples
is allowed to grow. Finally [13] considers subsampling for novel topological statistics in the
multi-sample regime.

However, even with these recent developments, the available techniques for constructing
confidence sets using topological statistics remain severely limited. The bootstrap has proven
one of the only effective tools, however the theoretical properties of bootstrap estimation
applied to topological statistics are not well understood. For the large-sample asymptotic
regime in particular, results are largely nonexistent.

The goal of this work is to provide the foundational theory for the bootstrap in this area. We
use the smooth bootstrap, rather than a standard bootstrap for reasons described below. The
validity of the smooth bootstrap in the multivariate setting is established, a key step towards
an eventual process-level result. However, the latter remains a significant technical hurdle.
While motivated primarily by application to topological data analysis, the results presented
here apply much more generally over a class of stabilizing statistics. As defined in [41], a
statistic stabilizes if the change in the function value induced by addition of new points to the
underlying sample is at most locally determined. This concept has lead to many developments
in topological data analysis and geometric probability, as discussed in more detail below.

Our general result allows the analysis of large-sample asymptotic properties of the boot-
strap applied to Betti numbers and Euler characteristics over Čech and Vietoris-Rips com-
plexes directly, where the underlying point cloud is a sample drawn from a common distri-
bution on Rd. Another application is the convergence for the bootstrap applied to the total
edge length of the k-nearest neighbor graph. Throughout this work, a special focus is given
towards weakening the necessary assumptions compared to previous results. Specifically, the
theorems presented here apply for distributions with unbounded support, unbounded density,
and possible discontinuities. We assume only a bound for an appropriate Lp-norm of the
underlying sampling density.

The first half of this paper considers stabilizing statistics in general. Section 2 introduces
the concept of stabilization and establishes intermediate technical results, and our general
bootstrap consistency theorem is presented. The second half introduces the main topological
and geometric statistics of interest to which the general theory is then applied. In particular,
Section 3 connects the general theory to persistent homology and related statistics. Towards
this end, a short introduction to simplicial complexes and persistent homology is presented.
Section 4 analyses the stabilization properties of persistent Betti numbers and Euler charac-
teristics for general classes of distance-based simplicial complexes. Bootstrap consistency is
established for each of these statistics, as well as for the total edge length of the k-nearest
neighbor graph. Section 5 and Appendix A present numerical studies (simulations and a
real data applications), demonstrating the finite-sample properties of the smoothed bootstrap
applied to persistent Betti numbers. Source code for the numerical sections is available at
github.com/btroycraft/stabilizing statistics bootstrap [47]. The proofs for all results can be
found in Section 7 of the main paper and Appendix B of the supplement [48].

https://github.com/btroycraft/stabilizing_statistics_bootstrap
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2. Stabilizing Statistics.

2.1. Central Limit Theorems for Stabilizing Statistics. Before proving bootstrap conver-
gence, we give a brief overview of the existing work regarding stabilizing statistics. For the
precise definitions used throughout this paper, see Section 2.2.

In the seminal work of [41], a stabilization property was first formally defined. In short,
we say that a functional ψ defined on point sets in Rd stabilizes if the cost of adding an
additional point, or a set of points, to the point cloud varies only on a bounded region. Specific
definitions differ by context (precise definitions are given below). [41] use this concept to
prove central limit theorems for certain types of geometric functionals, including the length
of the k-nearest neighbor graph and the number of edges in the sphere of influence graph.
This initial work distilled two properties key to showing central limit theorems for geometric
functionals: a stabilization property, and a moment bound.

In [41], the authors distinguish between two data generating regimes: A homogenous Pois-
son process over Rd and a binomial process, the latter being equivalent to an iid sample of
fixed size from an appropriate probability distribution. Here, the functional under considera-
tion is restricted to a bounded domainBn of volume n, where n is allowed to increase. In this
initial work, only homogenous Poisson processes and uniform binomial sampling are consid-
ered. In [42], a similar framework is used to establish laws of large numbers for graph-based
functionals, including the number of connected components in the minimum spanning tree.
Further quantitative refinements on the general central limit theorems for stabilizing statistics
are shown in [36], [35], and [37].

As pertains to topological statistics, an initial central limit theorem for Betti numbers (see
Section 3.2 for definitions) was shown in [57], establishing so-called weak stabilization for
Betti numbers in the homogenous Poisson and uniform binomial sampling settings. There an
alternative set-up is being used where the domain is kept fixed, while the filtration parameter
is decreasing to zero. A similar result for persistent Betti numbers is given in [29].

Finally, [34] establishes multivariate central limit theorems for persistent Betti numbers
under a flexible sampling setting. Here, a nonhomogeneous Poisson or binomial process is
generated again over a growing domain with fixed filtration radii.

With these central limit theorem results, the stabilization property plays a central role in
understanding the asymptotic behavior for wide classes of geometric and topological func-
tionals. Unfortunately, as a reoccurring trend, explicit forms for the asymptotic normal dis-
tributions are unavailable or computationally intractable. In this work it is shown how a
smoothed bootstrap procedure allows for consistent estimation of these inaccessible limit-
ing distributions, and thus for any subsequent inference derived therefrom.

2.2. Stabilization. Here, we extend and rephrase existing definitions found in [41], [42],
[57], and [34] to provide a more general and consistent statistical framework. Let X denote
the space consisting of multisets drawn from Rd with no accumulation points, with the further
restriction that no point in a given multiset may be counted more than finitely often. Any
locally-finite point process on Rd can be represented as a random element of X . Let X̃ ⊂
X contain the finite multisets drawn from Rd and ψ : X̃ → R be a measurable function.
Furthermore, for S,T ∈ X̃ define the addition cost of T to S as D(S;T ) := ψ(S ∪ T ) −
ψ(S). When T = {z} consists of a single point, we call

Dz(S) := ψ(S ∪ {z})−ψ(S)

an add-one cost or the add-z cost. Broadly, we say that ψ stabilizes if the addition cost of
a given T varies only on a bounded region. Examples for functionals ψ of interest, such as
persistent Betti numbers, Euler characterstics, or the length of the k-NN graph, are discussed
in Sections 3.3 to 3.5.
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In the preceding literature, the terms “strong” and “weak” stabilization are very often used,
with precise definitions changing based on circumstance. In the interest of providing more
explanatory and specific terminology, we propose the below definitions.

There, almost-sure and locally-determined almost-sure stabilization (see Definitions 2.4
and 2.5) correspond, respectively, to Definitions 3.1 and 2.1 in [41]. Here we have general-
ized by accounting for possible measurability issues, however the definitions are essentially
equivalent. Let Bz(r) denote the closed Euclidean ball centered at z ∈Rd with radius r. For
convenience, the dependence on ψ is implicit in each of the following.

DEFINITION 2.1 (Terminal Addition Cost). D∞ : X → R is a terminal addition cost of
T ∈ X̃ centered at z ∈Rd if

D∞(S;T ) = lim
`→∞

D(S ∩Bz(`);T )

for any S ∈ X such that the limit exists.

For a finite multiset S ∈ X̃ , the terminal addition cost centered at z ∈ Rd is D∞(S;T ) =
D(S;T ), because no changes may occur once S ∩ Bz(a) = S for a > 0 sufficiently large.
The same does not hold for infinite multisets, motivating a separate definition. In the special
case where T = {z} is a singleton containing the centerpoint z ∈ Rd, the notation D∞z may
be used, and will appear throughout the remaining sections of the paper.

DEFINITION 2.2 (Stabilization in Probability). For a given centerpoint z ∈ Rd, T ∈ X̃ ,
and point process S taking value in X , ψ stabilizes on S in probability if there exists a
terminal addition cost D∞ for ψ such that

lim
`→∞

P∗[D(S∩Bz(`);T ) 6=D∞(S;T )] = 0.

Here P∗ denotes the outer probability of a set. Stabilization is said to occur in proba-
bility because, for any sequence of non-negative radii (`i)i∈N such that limi→∞ `i =∞,
D(S∩Bz(`i);T )

p→D∞(S;T ) whenever both quantities are measurable. D∞ is unique up
to a null set in this case. Stabilization in probability is difficult to show directly for many
functionals of interest. As such, we have the following:

DEFINITION 2.3 (Radius of Stabilization). Given T ∈ X̃ , ρ : X → [0,∞] is a radius of
stabilization for ψ centered at z ∈Rd if, for any S ∈ X and L ∈R such that ρ(S)≤ L<∞,

D(S ∩Bz(L);T ) =D(S ∩Bz(ρ(S));T ).

Here D∞(S;T ) :=D(S ∩Bz(ρ(S));T ) is a valid terminal addition cost. Note that, in the
case where lim`→∞D(S ∩Bz(`);T ) does not exist, ρ(S) =∞ necessarily, with the stabi-
lization criterion being satisfied vacuously. When T = {z} we denote ρ= ρz .

In general, for any ψ, T ∈ X̃ , and centerpoint z ∈Rd, there exists a unique minimal radius
of stabilization, defined as the pointwise minimum over all such radii sharing the same cen-
terpoint z. This minimum exists because ψ(S ∩Bz(`)) is piecewise constant in `, changing
value only when a new point of S is added, and because S has no accumulation points.

DEFINITION 2.4 (Stabilization Almost Surely). For S a point process taking values in
X , ψ stabilizes on S almost surely if there exists a radius of stabilization ρ : X → [0,∞] for
ψ centered at z ∈Rd such that

lim
`→∞

P∗[ρ(S)> `] = 0.
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Mirroring our previous terminology, we say stabilization occurs almost surely because,
for any sequence of nonnegative radii (`i)i∈N such that `i → ∞, D(S∩Bz(`i);T )

a.s.→
D∞(S;T ) = D(S∩Bz(ρ(S));T ) whenever both quantities are measurable. Here we use
outer probability, because a radius of stabilization may not be a measurable function, specifi-
cally in the case of the unique minimal radius. Almost sure stabilization implies stabilization
in probability, as shown in the following.

PROPOSITION 2.1. For S a simple point process taking values in X , let ψ stabilize on S
almost surely. Then ψ stabilizes on S in probability.

For our proof techniques, it is often necessary to compare the stabilization properties of
a function over a range of related point processes. For example, corresponding binomial
and Poisson processes can be shown to have essentially equivalent local properties, while
differing globally. This motivates the following:

DEFINITION 2.5 (Locally Determined Radius of Stabilization). A radius of stabilization
ρ centered at z ∈Rd is locally determined if for any S,S′ ∈ X

S′ ∩Bz(ρ(S)) = S ∩Bz(ρ(S)) =⇒ ρ
(
S′
)

= ρ(S).

With the local-determination criterion from Definition 2.5, we can assure that stabilization
must occur simultaneously on any two point processes which are locally equivalent. As in
the non-locally-determined case, there exists a unique minimal locally-determined radius of
stabilization:

PROPOSITION 2.2. For R the set of locally-determined radii of stabilization for ψ cen-
tered at z ∈ Rd, let ρ∗ : X → [0,∞] such that ρ∗(S) = infρ∈R ρ(S). Then ρ∗ is a locally
determined radius of stabilization for ψ centered at z.

2.3. Technical Results. Let F and G be distributions on Rd with densities f := dF/dλ
and g := dG/dλ, respectively, where λ is the Lebesgue measure on Rd. F will be used to
refer to a fixed central distribution, whereas G may be arbitrary. Let (Xi)i∈N

iid∼ F . Then
for any n ∈ N define the binomial point process Xn := {Xi}ni=1, with X ′ ∼ F independent
of the (Xi)i∈N. Similarly, given (Yi)i∈N

iid∼G, for any n ∈ N let Yn := {Yi}ni=1 denote the
corresponding binomial process, and let Y ′ ∼G be independent of the (Yi)i∈N.

Let ‖·‖pp :=
∫
Rd |·|

p dλ. We will use the following moment assumptions, where the addition
cost D is based on a measurable function ψ : X̃ →R:

(E1) For some p≥ 2,

lim
δ→0

lim
k→∞

sup
g : ‖g−f‖

p
≤δ

sup
n∈N

E
[
D d
√
nY ′
(
d
√
nYn

)2
1
{∣∣D d

√
nY ′
(
d
√
nYn

)∣∣> k
}]

= 0.

(E2) There exist some R,U ∈R+, and u≥ 0 such that for any S ∈ X̃ and y ∈Rd,

|Dy(S)| ≤ U(1 + #{S ∩By(R)}u).

(E1) is primary, describing a moment bound that holds uniformly in the sample size n
and distribution G, within a neighborhood of the central distribution F . Alternatively, (E1)
represents a form of uniform integrability. However, the form of (E1) follows purely from
technical necessity. A strictly stronger, but more concrete moment condition is as follows:
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STATEMENT 2.1. For some p≥ 2, there exist a > 2 and δ > 0 such that

sup
g : ‖g−f‖

p
≤δ

sup
n∈N

E
[∣∣D d

√
nY ′
(
d
√
nYn

)∣∣a]<∞.
It may be shown that (E1) follows immediately from Statement 2.1 and Hölder’s inequal-

ity. Statement 2.1 is closely related to the “uniform bounded moments” condition, Definition
2.2 in [41]. In the context of the topological statistics considered later in this work, (E1) is
primarily useful for proof purposes, and is instead established via the intermediate (E2) (see
Lemma 2.3), which directly relates the addition cost to a local count within the underlying
point set. However, as will be seen with the case of the k-nearest neighbor graph (Corol-
lary 4.6), there exist useful statistics which cannot be deterministically controlled via (E2),
and the more general probabilistic condition must be established directly.

LEMMA 2.3. Let ψ satisfy (E2). Then the following hold:

1. If ‖f‖max{2u+1,2} <∞, then ψ satisfies (E1).
2. If ‖f‖max{p,2} <∞ for some p > 2u+ 1, then ψ satisfies Statement 2.1.

Next we formulate the required stabilization conditions. Recall that Xn and Yn denote
binomial point process with densities f and g, respectively, where f is the fixed density.
Furthermore, X ′ ∼ f,Y ′ ∼ g are independent of Xn and Yn, respectively:

(S1) There exists a sequence (εδ)δ≥0 such that limδ→0 εδ→ 0 and

lim
δ→0

sup
g : ‖g−f‖

2
≤δ

sup
n∈N

P
[
D d
√
nY ′

((
d
√
nYn

)
∩B d

√
nY ′

(
d

√
εδ
δ

))
6=D d

√
nY ′
(
d
√
nYn

)]
= 0.

(S2) There exist locally-determined radii of stabilization (ρz)z∈Rd for ψ satisfying

lim
`→∞

sup
n∈N

P∗
[
ρ d
√
nX′
(
d
√
nXn

)
> `
]

= 0.

(S1) and (S2) can be summarized as uniform stabilization conditions, either in probabil-
ity or almost surely. (S1) mainly serves to weaken the necessary conditions providing for
bootstrap consistency. We have the following lemma linking (S1) and (S2):

LEMMA 2.4. Let ψ satisfy (S2). Then if ‖f‖2 <∞, ψ satisfies (S1).

The quantities appearing in (S1) and (S2) can often be greatly simplified. For example, if
ψ is translation-invariant, given a radius of stabilization ρ0 and addition cost D0 centered at
the origin, corresponding quantities can be constructed for any other center point z ∈Rd via
translation.

The next lemma provides a convenient tool for “de-Poissonizing” a locally-determined
radius of stabilization. Often it is easier to first establish stabilization properties on a homo-
geneous Poisson process than on a binomial process directly, and Lemma 2.5 allows us to
extend Poisson results to the binomial setting, for instance as is required for Lemma 4.1 and
Corollary 4.6. Let Pλ denote a homogeneous Poisson process on Rd with intensity λ.

LEMMA 2.5. Let ψ be translation-invariant with a locally-determined radius of stabi-
lization ρ0 and ‖f‖2 <∞. Suppose that for any given a, b, δ > 0 there exist some L <∞
and measurable A⊂X such that

ρ−1
0 ((L,∞])⊆A and sup

λ∈[a,b]
P[Pλ ∈A]≤ δ.
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Then for any δ > 0 there exist some n0 ∈N and L<∞ such that

sup
n≥n0

P∗
[
ρ0

(
d
√
n
(
Xn −X ′

))
>L

]
≤ δ.

Note that the conclusion of Lemma 2.5 is not the same as (S1), only applying for n≥ n0.
Some extra effort is required for the conclusion to hold for all n ∈ N. We come now to
an important proposition, the main supporting result for our general bootstrap consistency
theorem, Theorem 2.7.

PROPOSITION 2.6. Let ψ satisfy (S1) and (E1) with ‖f‖p <∞. Then there exists a
coupling between (Xi)i∈N and (Yi)i∈N depending on G such that

sup
n∈N

Var

[
1√
n

(
ψ
(
d
√
nYn

)
−ψ

(
d
√
nXn

))]
≤ γ
(
‖g− f‖p

)
,

where the rate function γ : R+→ R+ is increasing and depends only on f and p such that
limδ→0 γ(δ) = 0.

The proof of this result is provided in Section 7. For any two distributions L1 and L2 on
R, we may define the 2-Wasserstein distance between L1 and L2 as

W2(L1,L2) :=

√
inf

U∼L1,V∼L2

E
[
(U − V )2

]
,

where it is assumed that U and V follow a joint distribution with marginals L1 and L2. For
L denoting the law or distribution of a random variable, the variance given in the conclusion
of Proposition 2.6 is an upper bound for

W 2
2

(
L
{
n−

1

2

(
ψ
(
d
√
nXn

)
−E

[
ψ
(
d
√
nXn

)])}
,L
{
n−

1

2

(
ψ
(
d
√
nYn

)
−E

[
ψ
(
d
√
nYn

)])})
.

Consequently, Proposition 2.6 shows that this W2-distance can be made arbitrarily small
uniformly over a neighborhood of distributions around F . An appropriately smoothed em-
pirical distribution falls within such a small neighborhood with high probability, given suffi-
ciently large sample sizes.

Furthermore, it can be seen that Proposition 2.6 extends directly to finite sums. Given any
(Ai)

k
i=1 and (Bi)

k
i=1, we have that Var [

∑k
i=1Ai −

∑k
i=1Bi]≤ k

∑k
i=1 Var [Ai −Bi]. Thus,

if the conclusion of Proposition 2.6 holds for any finite set of functions, (ψi)
k
i=1, it also holds

for
∑k

i=1ψi, with rate depending on the worst case ψi.
It should be noted that (S1) is slightly stronger than necessary to establish Proposition 2.6.

As stated, D d
√
nY ′((

d
√
nYn)∩B d

√
nY ′(lε)) itself is compared to the terminal add-one cost

D d
√
nY ′(

d
√
nYn). As could be useful for some statistics, it is only required that an appropriate

bound displays the desired stabilization property, see the provided proof for details.

2.4. Smoothed Bootstrap. The bootstrap is an estimation technique used to construct ap-
proximate confidence intervals for a given population parameter. In cases where asymptotic
approximations for the sampling distribution of a statistic are inconvenient or unavailable,
bootstrap estimation provides a general tool for constructing approximate confidence inter-
vals. Bootstrap estimation is well-studied in the statistical literature, an introduction being
provided in [43]. In this section, we will show consistency for a smoothed bootstrap pro-
cedure in estimating the limiting distribution of a standardized stabilizing statistic in the
multivariate setting. We describe the general bootstrap procedure below:
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Let Xn = {Xi}ni=1
iid∼ F . We estimate the sampling distribution of

1√
n

(
ψ
(
d
√
nXn

)
−E

[
ψ
(
d
√
nXn

)])
using a plug-in estimator F̂n for the underlying data distribution F . In the standard non-
parametric bootstrap, we estimate F by the empirical distribution, giving probability to each
unique value of Xn proportional to the number of repetitions. We have the bootstrap statistic

1√
m

(
ψ
(
d
√
mX∗m

)
−E

[
ψ
(
d
√
mX∗m

)∣∣Xn

])
,

where X∗m = {X∗i }
m
i=1

iid∼ F̂n, conditional on Xn. The sampling distribution of the bootstrap
analog provides an estimate for the distribution of the original statistic, which in the ideal
case converges to the truth in the large-sample limit. Confidence intervals for E[ψ( d

√
nXn)]

are then constructed from the bootstrap distribution and ψ( d
√
nXn).

However, as will be seen in Section 4.1, for some classes of topological statistics the
standard bootstrap may not directly replicate the correct sampling distribution asymptotically.
Consequently, we instead estimate F by a smoothed distributional approximation. Such a
smoothed bootstrap procedure can be shown to provide consistent estimation, even when the
standard nonparametric bootstrap may fail.

To define the smoothed bootstrap sampling procedure outlined here, recall first that F
has a density f := dF/dλ. Let f̂n be a given estimator of f derived from Xn and F̂n the
corresponding probability distribution. Conditional on Xn, we draw bootstrap samples X∗m
independently from F̂n. A particular choice of f̂n is given by a kernel density estimator
(KDE). For a kernel function Q : R→ R and bandwidth h > 0, the KDE of f(x) based on
the sample (Xi)

n
i=1 is f̂n,h(x) := 1/(nhd)

∑n
i=1Q((x−Xi)/h).

In practice, when Q corresponds to a probability density, the KDE allows for convenient
sampling, as is required in later computational steps. Generating a sample following f̂n,h is
equivalent to first drawing from the empirical distribution on Xn, then adding independent
noise following the distribution defined by Q, scaled first by the bandwidth h. Other density
estimators, including those using higher-order kernels, may not facilitate efficient sampling.
However, the theory established here supports the use of any density estimator which meets
the required convergence criteria, implementation difficulties aside. More complicated data-
dependent estimators are also possible, falling under a similar sampling framework. See Sec-
tions 5 and Appendix A for specifics on density estimation as pertains to this work from a
practical perspective. In algorithmic form, the bootstrap procedure for producing a nominal
level-γ confidence interval for E[ψ( d

√
nXn)] is as follows:

Smoothed Bootstrap Procedure:

1: Given Xn = {X1, . . . ,Xn} ∼ F and ψ(Xn)
2: Generate X∗m,1, . . . ,X

∗
m,B ∼ F̂n

3: Calculate
{

1√
m
(ψ( d
√
mX∗m,`)−

1
B

∑B
j=1ψ(

d
√
mX∗m,j))

}B
`=1

4: Calculate sample quantiles q(α1), q(1− α2) such that γ = 1− α1 − α2
return (ψ( d

√
nXn)−

√
nq(1− α2),ψ(

d
√
nXn)−

√
nq(α1))

Similar algorithms can be used to produce simultaneous coverage sets for multivariate
statistics. We now present our main result; the theorem establishes consistency for a smoothed
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bootstrap in the multivariate setting. The result is given for a vector ~ψ of stabilizing statis-
tics. In the context of the topological statistics introduced in Section 3, this can be the per-
sistent Betti numbers or Euler characteristic evaluated at different filtration parameters or
feature dimensions. Given a probability distribution F on Rd with density f := dF/dλ, let
(Xi)i∈N

iid∼ F , with Xn := {Xi}ni=1 for any n ∈N. f̂n denotes an estimate of f such that each
of the following quantities are measureable.

THEOREM 2.7. Suppose ~ψ : X̃ → Rk has component functions ψj : X̃ → R, 1 ≤ j ≤ k
satisfying (E1) and (S1) with ‖f‖2 <∞. Furthermore, let f̂n be such that ‖f̂n − f‖p→ 0 in
probability (resp. a.s.) as n→∞. For anym ∈N, we have a corresponding bootstrap sample
X∗m = {X∗i }

m
i=1

iid∼ F̂n
∣∣Xn. Then for any sequence (mn)n∈N such that limn→∞mn =∞,

1√
n

(
~ψ
(
d
√
nXn

)
−E

[
~ψ
(
d
√
nXn

)]) d→Ψ for a limiting distribution Ψ

if and only if

1
√
mn

(
~ψ
(
d
√
mnX

∗
mn

)
−E

[
~ψ
(
d
√
mnX

∗
mn

)∣∣∣Xn

])
d→Ψ in probability (resp. a.s.).

Theorem 2.7 establishes the asymptotic validity of bootstrap estimation for a range of
stabilizing statistics with only very mild conditions on the underlying density. However, it
should be noted that further restrictions on the density and density estimate may be required
to satisfy Statement 2.1 and (S1), see Corollary 4.6 for example. Proposition C.1 in the sup-
plement considers the convergence of ‖f̂n,hn − f‖p for p≥ 2, either in probability or almost
surely. This result is outside the main contribution of this paper, but is interesting in its own
right. Notably, no conditions are placed on the density f except ‖f‖p <∞.

As a point of caution, it is known that kernel density estimators suffer from a curse of
dimensionality. The convergence properties of the density estimator f̂n appear implicitly
within the necessary assumptions for Theorem 2.7. In particular, diminishing performance
can be expected in higher dimensions, as shown by the provided simulations of Section 5.

The above result holds for any choice of mn such that limn→∞mn =∞, and is stated as
such for the sake of generality. In practical application, mn = n is standard, and will be used
throughout the simulation and data analysis sections of this paper. However, given that the
computational complexity of ψ often grows quickly with n, using a smaller mn could prove
more feasible from a computational perspective.

Strictly speaking, convergence to a limiting distribution is not required for the bootstrap to
provide asymptotically valid confidence intervals. Proposition 2.6 gives that, with high proba-
bility, the smoothed bootstrap and true sampling distributions become close in 2-Wasserstein
distance. For Ψn := (~ψ( d

√
nXn)− E[~ψ( d

√
nXn)])/

√
n, provided that the cumulative distri-

bution functions FΨn
has the property

lim
‖δ‖→0

lim sup
n→∞

sup
x∈Rd
|FΨn

(x+ δ)− FΨn
(x)|= 0,

it can be shown that confidence intervals constructed from the bootstrap statistic still achieve
the stated confidence level with high probability, given a sufficiently large sample. Conver-
gence to a continuous limiting CDF is just one way to satisfy this condition. However, this
extension is unavailable for the topological statistics considered here, since the distributional
behavior of the finite sample statistics is currently very poorly understood.

In the later sections, we will show that the necessary moment and stabilization conditions
for Theorem 2.7 are satisfied for several specific statistics of interest, chiefly the Euler char-
acteristic and persistent Betti numbers for a class of simplicial complexes.
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3. Simplicial Complexes and Persistence Homology.

3.1. Simplicial Complexes. Given a vertex multiset S, each subset σ = {xi1 , . . . , xiq+1
} ⊂

S is called a q-dimensional simplex (over S), or simply a q-simplex. An abstract simplicial
complex K over S is a collection of simplices, such that (i) {x} ∈K for all x ∈ S, and (ii)
if σ ∈K and τ ⊂ σ then τ ∈K . Notice that geometrically a k-dimensional simplex τ with
τ ⊂ σ can be thought of as a face of σ, meaning that with every simplex all of its faces are
included in the complex, and also all the faces of its faces. A filtration of simplicial com-
plexes K = {Kr}r∈R is a collection of simplicial complexes with Kr ⊆Kt for r < t. For
a given simplicial complex K , Kq denotes the subset of K consisting of all q-simplices
{v1, . . . , vq+1} ⊂ V , consisting of q + 1 vertices. A graph or network is a simplicial com-
plex consisting of only 1-simplices (edges) and 0-simplices (vertices). A visualization of a
simplicial complex can be found in Figure 1, included features of dimension up to q = 2.

We will be looking at simplicial complexes constructed over point clouds S ⊂ Rd. The
two prime examples are the Čech and Vietoris-Rips complexes:

Kr
C(S) =

{
σ ⊆ S : ∃z ∈Rd s.t. ‖z − x‖ ≤ r ∀x ∈ σ

}
Kr

VR(S) = {σ ⊆ S : ‖x− y‖ ≤ 2r ∀x, y ∈ σ}.

Each of these complexes summarizes the geometric and topological properties within a
given point cloud S. The Vietoris-Rips complex can be considered a “completion” of the
Čech complex, in so much that the Vietoris-Rips complex is the largest simplicial complex
with the same edge set as the Čech complex. While the primary motivation for the results
given here is application to the Čech and Vietoris-Rips complexes, our main results apply for
a range of possible complexes. For example, for computational reasons it is often convenient
to limit the number of simplices present within the final complex. As such, we have two
approximations, the alpha complex and its completion

Kr
α(S) =

{
σ ⊆ S : ∃z ∈Rd s.t. ‖z − x‖ ≤ r and ‖z − x‖ ≤ ‖z − y‖ ∀x ∈ σ ∀y ∈ S

}
Kr
α∗(S) = {σ ⊆ S : {x, y} ∈Kr

α(S) ∀x, y ∈ σ}.

These complexes avoid adding simplices between disparate points, controlling the total
size of the complex. It has been shown that the alpha and Čech complexes share equivalent
homology groups. However, for the completion, denoted here as the alpha* complex, there is
no such relationship. The alpha complex is a subcomplex of the Čech complex as well as the
Delaunay complex

KD(S) =
{
σ ⊆ S : ∃z ∈Rd s.t. ‖z − x‖ ≤ ‖z − y‖ ∀x ∈ σ ∀y ∈ S

}
.

3.2. Persistent Homology. Now, of chief interest are the topological properties for a
given simplicial complex. Both the Čech and Vietoris-Rips complexes reflect the structure
present within an underlying point cloud. As such the topology of each provides an effective
summary statistic for describing the structural properties of a dataset in Rd. The following
provides a short introduction to homology and persistence homology as used in topological
data analysis.

Define C(K) to be the free abelian group generated by the simplices in K . Elements
of C(K) are sums of the form

∑
i∈I aiσi, where σi ∈ K and, for the purpose of this pa-

per, the coefficients ai are drawn from the two-element field F2 = {0,1}. Thus C(K) is a
vector space. C(K) is equipped with a linear boundary operator ∂ : C(K)→ C(K) where
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FIG 1. Visualization of a simplicial complex. Simplices up to dimension (q = 2) are included, represented by
vertices (q = 0), edges (q = 1), and triangles (q = 2) respectively.

∂({x1, . . . , xq+1}) =
∑q

i=1 (−1)i{x1, . . . , xi−1, xi+1, . . . , xq+1}. As a fundamental property,
∂ ◦ ∂ = 0. With coefficients in F2, the boundary of a simplex reduces to the sum of all its
faces. Cq(K) = C(Kq) is the subspace spanned by the q-simplices of K , with the image of
Cq(K) under ∂ lying in Cq−1(K). ∂q : Cq(K)→ Cq−1(K) denotes the restriction of ∂ to
Cq(K).

We now construct the homology groups of K . Let Z(K) = ker (∂) be the subspace
of C(K) containing the cycles, those elements whose boundary under ∂ is 0. Zq(K) =
Z(Kq) = ker (∂q) is the restriction of Z(K) to dimension q. Let B(K) = im(∂) denote the
subspace of boundaries in C(K). Bq(K) = B(Kq) = im (∂q+1) is the subspace consisting
of the boundaries of elements in Cq+1(K), lying in Cq(K).

The homology groups are given by Hq(K) := Zq(K)/Bq(K), the cycles Zq in dimen-
sion q modulo the boundaries Bq . In words, the elements of the homology groups represent
“holes” within the simplicial complex, shown by closed loops whose interior is not filled
by other elements in the complex. These homology groups provide a topological summary
of the structure in the simplicial complex K . As stated previously, because we assume field
coefficients for C(K), each homology group is also a vector space. The Betti numbers of
the complex represent the degree or dimension of each homology space. We denote the q-
th Betti number of K by βq(K) = dim (Zq(K)/Bq(K)) = dim (Zq(K)) − dim (Bq(K)).
Moving forward, Betti numbers and their like will be of primary interest.

Homology provides a topological invariant constructed from a single simplicial complex.
For a filtration of nested simplicial complexes, persistent homology provides more detail.
Given a filtration K = {Kr}r∈R, the homology groups for each complex, Hq(K

r), are de-
fined. However, due to the nested structure of the filtration, simplices are shared across com-
plexes, and thus there exists a natural inclusion map between homology spaces. Cycles in
Zq(K

r) are also cycles in Zq(K
t) if r < t. The boundary spaces behave similarly. For a

given equivalence class x + Bq(K
r) ∈Hq(K

r), x + Bq(K
r)→ x + Bq(K

t) specifies the
inclusion map from Hq(K

r) to Hq(K
t).

If a given element x̃ ∈Hq(K
r) maps to ỹ ∈Hq(K

t) upon inclusion, with ỹ 6= Bq(K
t),

we say that x̃ represents a persistent cycle across the filtration. Essentially the same under-
lying element is reflected in the homology groups over a range of simplicial complexes. The
collection of homology groups and inclusion maps form a persistence module. A wide body
of work exists on the properties of these persistence modules, see [58] for an introduction.
For any cycle feature in the filtration, there is a well defined death time, being the smallest
parameter level for which the given element lies in the kernel. The Betti numbers of a filtra-
tion form a function in the filtration parameter, r. We use the notation βrq (K) := βq(K

r). The
Betti numbers in this context count the number of persistent features extant at r.

It is a fundamental theorem of persistent homology that a sufficiently well-behaved persis-
tence module can be represented by a persistence diagram. A diagram D(K) is a multiset in
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R2 ×N0 of points (b, d, q). Each point represents a single persistent feature in the module. b
denotes the birth time of the feature, being the smallest parameter level for which that feature
is represented in the homology groups. Likewise d gives the death time, and q the dimension
of the feature. The collection of persistent features represented by the diagram are a basis for
the corresponding persistence module.

The persistence diagram is a simple summary statistic which condenses the complex topo-
logical information present within a filtration. An example of a persistence diagram is shown
in Figure 2.

3.3. Persistent Betti Numbers. We arrive at the main focus of this section. For r ≤ s,
define the persistent homology groups of a filtration K= {Kr}r∈R as

Hr,s
q (K) := Zq(K

r)/(Bq(K
s)∩Zq(Kr)).

Nonzero elements in this group represent features born at or before time r which persist until
at least time s. The dimension of these spaces gives the persistent Betti numbers

βr,sq (K) := dim (Zq(K
r)/Bq(K

s)∩Zq(Kr))

= dim (Zq(K
r))− dim (Bq(K

s)∩Zq(Kr)).

Persistent Betti numbers are in one-to-one correspondence with the respective persistence
diagram. Here βr,sq (K) counts the number of points in D(K) of feature dimension q falling
within (−∞, r] × (s,∞]. When s = r, we recover the regular Betti numbers, βr,rq (K) =
βq(K

r). An important result for persistent Betti numbers is given in the following lemma.

LEMMA 3.1 (Geometric Lemma). [Lemma 2.11 in [29]] Let J = {Jr}r∈R and K =
{Kr}r∈R be filtrations of simplicial complexes with Jr ⊆Kr for all r ∈R. Then∣∣βr,sq (K)− βr,sq (J )

∣∣≤ max
{

#
{
Kr
q \ Jrq

}
,#
{
Ks
q+1 \ Jsq+1

}}
≤ #

{
Kr
q \ Jrq

}
+ #

{
Ks
q+1 \ Jsq+1

}
.

The Geometric Lemma 3.1 relates the change in persistent Betti numbers between two
filtrations to the additional simplices gained moving between them. As a brief explanation of
the lemma, simplices can be divided into two classes, positive and negative. For two simpli-
cial complexes J ⊂K , if we imagine adding the additional q-simplices inK to J one by one,
a positive q-simplex will increase the dimension of Zq by one, and a negative q-simplex will
increase the dimension ofBq−1 by one. Either change can affect the persistent Betti numbers.
This dichotomy is a basic result from persistent homology, see [7]. The bound given in the
Geometric Lemma describes a worst case, when all q-simplices at time r are positive or all
(q + 1)-simplices at time s are negative. The Geometric Lemma will be critical moving for-
ward, as it allows us to control the change in persistent Betti numbers by counting appropriate
simplices.

3.4. Euler Characteristic. For a given simplicial complex K , the Euler characteristic is
defined as

χ(K) :=

∞∑
k=0

(−1)k#{Kk}.

Provided there is an m ∈ N such that the Betti numbers βq(K) are 0 for all q > m (as in
(D4) holds), it can be shown that the Euler characteristic has the following identity with the
Betti numbers:

χ(K) =

∞∑
k=0

(−1)kβk(K).
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FIG 2. Left: The original data set of size n= 10,000, from which a single standard bootstrap sample is drawn.
Middle: Persistence diagrams for both the original and bootstrap samples, along with lines denoting the median
birth and death in each diagram. The asymptotic bias discussed in Section 4.1 can be clearly seen. Right: Per-
sistence diagrams after application of a multiplicative correction factor of

√
1− e−1 ≈ 0.795 to the bootstrap

sample. Note that the median birth and death values correspond after this transformation is applied.

This relationship with the Betti numbers makes the Euler characteristic an important topo-
logical invariant in its own right. Applications of the Euler characteristic and derivatives may
be found in [44, 46, 52].

3.5. k-Nearest Neighbor Graph. The k-nearest neighbor graph KNN,k of a vertex set S
connects each point x ∈ S with the k closest vertices to x within S \ x. This graph may
either be directed or undirected. KNN,k is commonly used to analyze the clustering structure
of a point cloud. Let the total length of the edges in this graph be denoted by lNN,k. The
total length of the k-nearest neighbor graph, when suitably scaled, provides a measure of the
average local “density”, or concentration of the points in S. In Section 4.5, we will show
bootstrap consistency for lNN,k within the stabilization framework.

4. Bootstrapping Topological Statistics.

4.1. Nonparametric Bootstrap. In this section, we will argue that the standard nonpara-
metric bootstrap may fail to reproduce the correct sampling distribution asymptotically when
applied to common topological statistics.

For a wide class of simplicial complexes built over point sets in Rd, the corresponding
persistence diagram is unaffected by the inclusion of repeated points within the vertex set.
This behavior holds for both the Vietoris-Rips and Čech complexes, defined in Section 3.1.
In the case of the Čech complex, this phenomenon is seen most directly. The Čech complex
under the Euclidean metric is homologically equivalent to a union of closed balls centered on
the corresponding vertex points in Rd. Additional repetitions within the set of vertex points
do not affect the union and thus to do change the derived persistence diagram.

In cases like this where repetitions may be ignored in statistic calculations, the standard
bootstrap behaves effectively like a subsampling technique. The size of a given subsample is
random, equal to the number of unique points present in the corresponding bootstrap sample.

Given a random sample Xn = {X1, . . . ,Xn}, it can be shown using elementary argu-
ments that a given bootstrap sample X∗n of size n from the empirical distribution over Xn

is expected to contain n(1 − (1− 1/n)n) ≈ (1− e−1)n ≈ 0.632n unique points. As such,
X∗n behaves similarly to a sample of size 0.632n, but is not scaled accordingly within the
statistic (βr,sq ( d

√
nX∗n)−E[βr,sq ( d

√
nX∗n)|Xn])/ d

√
n. This discrepancy in scaling introduces

a non-negligible asymptotic bias. The effect is illustrated in Figure 2 for the Vietoris-Rips
complex.

Furthermore, the standard nonparametric bootstrap results in a fundamentally different
point process limit at small scales when compared to the original data generating mechanism.
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For the original sample, when Xn is drawn from a distribution with density f , the shifted and
rescaled sample d

√
n(Xn − z) approaches a homogeneous Poisson process Pz with intensity

f(z). From the preceeding stabilization literature ([41], [34]), this limiting local point pro-
cess drives the asymptotic sampling distribution of (βr,sq ( d

√
nXn)−E[βr,sq ( d

√
nXn)])/ d

√
n.

Considering the large-sample behavior of d
√
n(X∗n − z)|Xn, the smoothed bootstrap sam-

pling procedure described in Section 2.4 can be shown to reproduce the same local Poisson
process Pz asymptotically.

However, the same is not true for the standard bootstrap when repeated points are ignored.
In this case, d

√
n(X∗n − z)|Xn is restricted to the discrete set d

√
n(Xn − z), and thus cannot

reproduce Pz , whose domain is Rd. For this case, we describe the resulting point process
limit Qz in two steps. First, a homogenous Poisson process Pz is generated, representing
d
√
n(Xn − z). Defined conditionally, Qz is a random subset of Pz such that P[x ∈Qz|Pz] =

1− e−1 ≈ .632, considering each point x ∈Pz independently. We have d
√
n(X∗n − z)

d→Qz .
This difference in local behavior, combined with the asymptotic bias effect illus-

trated earlier, is a strong indicator that (βr,sq ( d
√
nX∗n)−E[βr,sq ( d

√
nX∗n)]

∣∣Xn)/ d
√
n and

(βr,sq ( d
√
nXn)−E[βr,sq ( d

√
nXn)])/ d

√
n likely do not share a weak limit. A technical treat-

ment is omitted here, and is outlined merely to justify the use of our smoothed bootstrap
procedure in place of the standard method. The smoothed bootstrap procedure provides for
bootstrap consistency (Corollaries 4.2 and 4.3), and in the following sections we consider
only this approach.

4.2. General Conditions for Simplicial Complexes. The results presented in the follow-
ing sections apply for a range of simplicial complexes constructed over point clouds in Rd.
Here we will explain the specific conditions used, and for which common simplicial com-
plexes they apply. Let K be a function taking as input S ∈ X̃ (Rd), giving as output a simpli-
cial complex with vertices in S. For a given simplex σ, let the set diameter be diam (σ). We
have the following conditions:

(K1) For any S ∈ X̃ (Rd) and z /∈ S, K(S)⊆K(S ∪ {z}). Furthermore, σ ∈K(S ∪ {z}) \
K(S) only if z ∈ σ.

(K2) For any S ∈ X̃ (Rd) and z ∈Rd, σ ∈K(S) only if σ− z ∈K(S − z).

(D1) There exists φ <∞ such that for any S ∈ X̃ (Rd), σ ∈K(S) only if diam (σ)≤ φ.
(D2) There exists φ <∞ such that for any S ∈ X̃ (Rd) and z ∈Rd, σ ∈K(S ∪ {z})4K(S)

only if σ ⊂Bz(φ).
(D3) There exists an η > 0 such that for any S ∈ X̃ (Rd) and x ∈ Z(K(S)), diam (x) ≤ η

only if x ∈B(K(S)).
(D4) There exists anm∈N such that for any k>m and S∈X̃ (Rd), Zk(K(S)) =Bk(K(S)).

(K1) means that the addition of a new point will not change the existing complex, only
add new simplices. Furthermore, any new simplices gained must contain the added point as a
vertex. (K2) gives that the complex is essentially translation invariant. (D1) sets a maximum
diameter for any simplex in the complex. (D2) gives that the influence of a new point on
the complex is confined to a local region around that point, within a fixed diameter. This
condition allows for both the addition and removal of simplices from the complex, but only
within the prescribed radius. It can be easily shown that if (D2) holds for φ, (D1) holds for
2φ. Conversely if both (K1) and (D1) hold for φ, (D2) also holds for φ. Finally, (D3) gives
that no small loops can exist with unfilled interiors, and (D4) gives that all Betti numbers are
0 in sufficiently high feature dimensions.

Now, let K= (Kr)r∈R be a function taking as input S ∈ X̃ (Rd), giving as output a filtra-
tion of simplicial complexes with vertices in S. As a slight abuse, we will often refer to the
function K as a filtration of simplicial complexes, even though it is a function defining more
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than a single filtration, depending on the underlying point cloud. We say that a given condi-
tion is satisfied for K if it is satisfied by Kr for any r ∈ R. In the cases of (D1), (D2), and
(D3), φ and η may depend on r as increasing functions φ : R→ [0,∞) and η : R→ [0,∞).

It can be shown that all of (K1)-(D3) are satisfied for both the Vietoris-Rips complex in Rd
using φ(r) = η(r) = 2r and for the Čech complex using φ(r) = 2r, η(r) = r. The functions
for the Čech complex are established via interleaving with the VR complex, see [20] for
details. The same functions apply for the alpha complex in Rd and its completion Kα∗ , with
the notable exception that (K1) is violated. Finally, it is known that (D4) is satisfied by the
alpha, Čech, and Delaunay complexes in Rd for m= d− 1.

While covering a wide class of distance-based simplicial complexes, there are several com-
plexes used in practice that may fail to satisfy any or all of these. For example, the addition
of a new point to the Delaunay complex, Gabriel graph, witness complex, or k-nearest neigh-
bor graph can both add and remove simplices, violating (K1). Furthermore, there is not any
limit on the simplex diameter within any of these complexes, violating (D1). Likewise, the
addition of a single point can alter simplices at arbitrarily large distances, violating (D2). As
a special note, it is common in practice to consider the intersection of the Vietoris-Rips and
Delaunay complexes, which unfortunately may violate all the assumptions here. It is unclear
if an extension or special consideration could be made to incorporate these complexes.

4.3. Stabilization of Persistent Betti Numbers. To apply the general bootstrap theorem,
we first require a technical lemma establishing a locally-determined radius of stabilization for
persistent Betti numbers. The result given applies for general classes of simplicial complexes
constructed over subsets of Rd, under the same conditions stated in Section 4.2. The follow-
ing apply for a probability distribution F on Rd with density f and a filtration of simplicial
complexes K= {Kr}r∈R. We have:

LEMMA 4.1. Let ‖f‖2 <∞ and K satisfy (K2), (D2), and (D3). Then βr,sq (K) satisfies
(S2) for any r ∈R, s ∈R, and q ≥ 0.

4.4. Bootstrap Results for Persistence Homology. Here we present the main applied re-
sults of this paper. Each is derived from Theorem 2.7 and the stabilization lemma for per-
sistent Betti numbers (Lemma 4.1). For given vectors of birth and death times, ~r = (ri)

k
i=1

and ~s = (si)
k
i=1, let β~r,~sq = (βri,siq )ki=1 denote the multivariate function whose components

are the persistent Betti numbers evaluated at each pair of birth and death times. For a vector
of filtration times ~r = (ri)

k
i=1, let χ~r denote the function giving the Euler characteristic at

each time ri, with χ~r := (χ(Kri))ki=1.
The following apply for a given multivariate statistic ~ψ and a probability distribution F on

Rd with density f := dF/dλ such that ‖f‖p <∞ for some specified p≥ 2. F̂n is a random
distributional estimate with density f̂n := dF̂n/dλ such that ‖f̂n − f‖p→ 0 in probability (or
almost surely). (Xi)i∈N

iid∼ F , and Xn := {Xi}ni=1 for any n ∈N. (X∗n,i)i∈N
iid∼ F̂n is a condi-

tionally independent sequence of bootstrap samples drawn from F̂n, and Xn,m := {X∗i,n}mi=1
for any m,n ∈ N. Ψ denotes a limiting multivariate distribution, and (mn)n∈N is any se-
quence such that limn→∞mn =∞. Recalling the conclusion of Theorem 2.7:

STATEMENT 4.1.
1√
n

(
~ψ
(
d
√
nXn

)
−E

[
~ψ
(
d
√
nXn

)]) d→Ψ

if and only if
1
√
mn

(
~ψ
(
d
√
mnX

∗
n,mn

)
−E

[
~ψ
(
d
√
mnX

∗
n,mn

)∣∣∣F̂n]) d→Ψ in probability (resp. a.s.).
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For cases with a corresponding central limit theorem, Ψ is a limiting normal distribution.
For each of the following K= (Kr)r∈R is a filtration of simplicial complexes.

COROLLARY 4.2 (Persistent Betti Numbers). Let q ≥ 0 and p= 2q + 3. Let K satisfy
(K1), (K2), (D1), and (D3). Then for any given ~r, ~s, Statement 4.1 holds for β~r,~sq .

COROLLARY 4.3 (Persistent Betti Numbers - Alt.). Let q ≥ 0 and p = 2q + 5. Let K
satisfy (K2), (D2), and (D3). Then for any given ~r, ~s, Statement 4.1 holds for β~r,~sq .

The only differences between the above corollaries are the conditions satisfied by the un-
derlying simplicial complex and the necessary norm bound on the density. The corresponding
results for Betti numbers follow as special cases of Corollaries 4.2 and 4.3, when the given
birth and death parameters are equal (β~rq = β~r,~rq ). Also, although the statements of Corollar-
ies 4.2 and 4.3 are given in terms of a fixed feature dimension q, a direct extension exists if
q = qi is allowed to differ for each (ri, si). The form as given shows the dependence of the
density norm assumption on the chosen feature dimension.

Note, throughout this work, including Corollaries 4.2 and 4.3, the asymptotic regime we
consider consists of a fixed statistic and a rescaled underlying sample. However, for the per-
sistent Betti numbers of the Čech and Vietoris-Rips complexes, we can equivalently shift the
scaling factor from the sample to the filtration parameters (~rn,~sn) = (~r/ d

√
n,~s/ d

√
n).

The higher value of p required in Corollary 4.3 compared to Corollary 4.2 can be explained
intuitively based on the assumptions used. For the persistent Betti numbers, the main quantity
controlling convergence is the expected number of simplices altered or introduced when a
new datapoint is added to the sample. (D2) ensures that these simplices fall within a small ball
around the new data point. The stated density norm conditions control the expected number
of points, and by extension possible simplices, that can lie within that small ball. Introducing
(K1) further controls the number of possible simplices, and allows for a weakening of the
necessary norm condition. (K1) requires that, as the sample grows by a single point, any
additional simplices must contain the new point as a vertex, and no deletion of simplices is
possible. This means that every added simplex has one less “free” vertex, and a weaker norm
condition is required for control. The same intuition applies whenever (K1) is assumed.

In the specific case of the alpha complex, both of the above Corollaries 4.2 and 4.3 apply.
While the alpha complex does not satisfy (K1), it has equal persistent Betti numbers to the
Čech complex, which does. Thus, the weaker conditions of Corollary 4.2 are sufficient in this
unique case.

COROLLARY 4.4 (Euler Characteristic). Let m <∞ and p ≥ 2m + 3. Let K be a
filtration of simplicial complexes satisfying (K1), (K2), (D1), (D3), and (D4). Then for any
given ~r, Statement 4.1 holds for χ~r .

COROLLARY 4.5 (Euler Characteristic - Alt.). Let m<∞ and p≥ 2m+ 5. Let K be
a filtration of simplicial complexes satisfying (K2), (D2), (D3), and (D4). Then for any given
~r, Statement 4.1 holds for χ~r .

It is suspected that some of the simplicial complex assumptions can be relaxed in the per-
sistent Betti number and Euler characteristic cases, but the extent to which this is possible is
still unknown. Specifically, Corollary 4.2 requires a translation-invariant simplicial complex
(K2), along with the elimination of small loops via (D3). Furthermore, (D4) is necessary for
the Euler characteristic to grow polynomially, as in (E2). See [33] for an analysis of the Euler
characteristic where this assumption can be relaxed.



BOOTSTRAPPING STABILIZING STATISTICS 17

To strengthen Corollaries 4.2-4.5 with rates, we require more specific knowledge about
the convergence to G of the original statistic. For persistent Betti numbers in the multivariate
setting, general central limit theorems have been shown in [34], but little is known at this
time with regards to rates of convergence. Proposition 2.6 and (2.1) do allow for rates of con-
vergence in 2-Wasserstein distance between the bootstrap and true sampling distributions for
finite sample sizes, but is phrased in terms of a tail probability for the radius of stabilization.
See the proofs of Corollaries 4.2-4.5 for details. For persistent Betti numbers the tail behavior
of the radius of stabilization is poorly understood. Owing to these difficulties, we may only
conclude consistency of the smoothed bootstrap for the functions considered.

4.5. Bootstrap Results for k-Nearest Neighbor Graphs. In the following, let Dγ,r0(C)
be the class of distributions G with support on a bounded C ⊂Rd such that

∫
Bx(r) dG≥ γrd

for all r ≤ r0 and x ∈ C for some γ > 0. This set of criteria is widely used and sometimes
known as the “standard asssumption” for probability measures (see [16], [41]).

COROLLARY 4.6 (Total Edge Length of the k-Nearest Neighbor Graph). Let p > 2.
Furthermore, let F ∈ Dγ,r0(C) and 1{F̂n ∈Dγ,r0(C)}→ 1 in probability (resp. a.s.). Then
Statement 4.1 holds for lNN,k.

The conditions of Corollary 4.6 are in particular satisfied when C is known and convex,
with f bounded below on C by a positive constant, provided further that ‖f̂n − f‖∞→ 0 in
probability (resp. a.s.). We include this final result to demonstrate the utility of stabilization
as a general tool for proving bootstrap convergence theorems outside of topological data
analysis. The k-nearest neighbor graph does not fall under the general simplicial complex
conditions provided in Section 4.2, thus special treatment is needed to show the required
stabilization and moment conditions. Here we rely on previous results from the literature, see
[41] for stabilization results and the corresponding central limit theorem.

5. Simulation Study. In this section we present the results of a series of simulations
illustrating the finite-sample properties of the smoothed bootstrap applied to persistent Betti
numbers βr,sq of the Vietoris-Rips complex constructed over point sets in Rd. Precise defini-
tions and an introduction to the properties of these statistics may be found in Section 3. Source
code for this section is available at github.com/btroycraft/stabilizing statistics bootstrap.

We investigate the coverage probability of bootstrap confidence intervals on the expected
persistent Betti numbers E[βr,sq ( d

√
nXn)] for a variety of feature dimensions, sample sizes,

data generating mechanisms, and bandwidth selectors. Table 1 lists brief descriptions of the
data distributions considered. For more detailed explanations, see Appendix D in the sup-
plement. Simulation results are given in Table 2. For the persistent Betti numbers, a single
choice of (r, s) was made for each combination of distribution and feature dimension, cho-
sen to lie within the main body of features in the corresponding persistence diagram. For
computational reasons, only feature dimensions q = 1 and q = 2 are considered.

We consider four data-driven bandwidth selectors. First are the “Hpi.diag” (plug-in),
“Hlscv.diag” (least-squares cross-validation), and “Hscv.diag” (smoothed cross-validation)
selectors from the ks package in R. Each of these selectors are available for data dimension
up to d = 6. Last, we consider Silverman’s rule of thumb (see [49]) via “bw.silv” from the
kernelboot package in R, which accepts data in any dimension.

For the two cross-validation selectors, note that a bandwidth is not always selected, throw-
ing errors on some datasets. To accommodate the automatic setting of this simulation study,
any error-producing data sets were simply rejected for each of these cases.

https://github.com/btroycraft/stabilizing_statistics_bootstrap
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Label Description

F1 Rotationally symmetric in R2, finite L8 norm
F2 Rotationally symmetric in R2, finite L2 norm, infinite L8 norm
F3 S1 embedded in R2, additive Gaussian noise
F4 Uniformly distributed over B0(1) in R3, additive Gaussian noise
F5 5 clusters in R3, additive exponential noise
F6 S2 embedded in R5, additive Cauchy noise
F7 Flat figure-8 embedded in R10, additive Gaussian noise

TABLE 1
Description of densities or distributions considered for the simulation study of Section 5. For the distributions

based on manifolds, we first draw uniformly from the manifold, then apply the prescribed additive noise. Detailed
explanations of the distributions considered, along with precise definitions are provided in the supplement.

There is a noticeable drop-off in coverage as the data dimension increases. This is ex-
pected, as the kernel density estimator is known to suffer from a “curse of dimensionality”.
Furthermore, there is a similar decrease for increasing feature dimension, as well. This is
also expected, because the W2-convergence rate bounds of Proposition 2.6 are slower with
increased feature dimension (see Appendix B.5 for details.)

For distribution F6, which exhibits heavy tails, performance generally is very low, due
to poor performance of the underlying selectors. It is likely that performance will suffer
generally in the presence of heavy tailed data when using one of these common selectors
which does not account for the prevalence of outliers in heavy-tailed data. Furthermore, error
due to boundary effects can be expected for highly discontinuous distributions, for example as
seen in the case of F4 in feature dimension q = 2. Here, the probability mass near the support
boundary is more highly spread after smoothing than in the original distribution, leading to
an upward shift in the scale of the associated topological features and a corresponding bias
in the persistent Betti numbers.

The coverage proportion is generally smaller than the nominal level of 95%. Therefore, it is
recommended to use a larger than desired level, especially for limited sample sizes. In terms
of general performance, we recommend any of “Hpi.diag”, “Hlscv.diag”, or “Hscv.diag”.
These selectors provide the most consistent coverage, and effectively replicate the nominal
95% level in many cases, especially for the largest sample size n = 400. Silverman’s rule
performs badly in several cases, and should only be used in the absence of better alternatives.

A real data application using Galaxy data can be found in the supplemental material.

6. Discussion. In this work we have shown the large-sample consistency of multivariate
bootstrap estimation for a range of stabilizing statistics. This includes the persistent Betti
numbers, the Euler characteristic, and the total edge length of the k-nearest neighbor graph.
However, many open questions still remain.

In Section 4.1 it was argued that the standard nonparametric bootstrap may fail to directly
reproduce the correct sampling distribution asymptotically for topological statistics like the
persistent Betti numbers. However, there remains the possibility that a corrected version of
the standard bootstrap could provide for consistency. As discussed in Section 4.1, standard
bootstrap sampling results in a fundamentally different point process limit at small scales.
Previous stabilization results primarily consider Poisson and related processes, meaning a full
theoretical treatment of the standard bootstrap would likely require reconstructing much of
the previous stabilization and central limit theorem results for the alternative limiting process.

The results for the smoothed bootstrap presented here apply only in the multivariate set-
ting, the obvious extension being to stochastic processes. Essential to a process-level result
concerning the persistent Betti numbers would be a convenient tail bound for the radius of
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Distr. F1 F2 F3 F4 F5 F6 F7 F4 F5 F6 F7
q = 1 q = 2

r 4.94 5.20 3.03 1.92 0.30 1.78 1.28 2.96 0.39 2.71 1.46
s 5.36 5.60 3.28 2.12 0.31 1.91 1.32 3.04 0.40 2.80 1.47

n= 100 0.896 0.965 0.921 0.859 0.954 0.19 0.908 0.705 0.038
0.931 0.959 0.914 0.809 0.941 0.133 0.903 0.604 0.045
0.903 0.97 0.91 0.859 0.927 0.049 0.902 0.363 0.002
0.359 0.931 0.942 0.864 0 0 0.656 0.902 0 0 0.045

n= 200 0.908 0.971 0.94 0.898 0.942 0.159 0.878 0.795 0.125
0.92 0.972 0.946 0.891 0.923 0.106 0.872 0.707 0.074
0.888 0.975 0.959 0.906 0.892 0.06 0.908 0.277 0.031
0.299 0.954 0.903 0.899 0 0 0.766 0.882 0 0 0.537

n= 300 0.9 0.971 0.926 0.921 0.94 0.183 0.854 0.906 0.225
0.94 0.971 0.938 0.896 0.94 0.087 0.854 0.917 0.072
0.913 0.971 0.94 0.896 0.922 0.054 0.855 0.964 0.074
0.283 0.956 0.925 0.906 0 0 0.835 0.856 0 0 0.508

n= 400 0.918 0.961 0.947 0.934 0.96 0.175 0.851 0.883 0.259
0.927 0.951 0.938 0.92 0.955 0.063 0.839 0.88 0.076
0.908 0.976 0.933 0.924 0.939 0.062 0.863 0.958 0.099
0.266 0.961 0.909 0.922 0.114 0 0.891 0.859 0 0 0.584

TABLE 2
Coverage proportions for 95% smoothed bootstrap confidence intervals on the mean persistent Betti numbers;
coverage is estimated using N = 1,000 independent base samples with B = 500 bootstrap samples each. True
mean persistent Betti numbers are estimated using a large (N = 100,000) number of independent samples from

the true distribution. For each case, the values from top to bottom: Coverage proportions using “Hpi.diag”,
“Hlscv.diag”, “Hscv.diag”, and “bw.silv” bandwidth selectors, respectively (see Section 5).

stabilization, which is yet unavailable. In the case of persistent Betti numbers, there is a strong
relationship between the persistent Betti function and an empirical CDF in two dimensions.
As such, there is much established theory in that regard which may be applied once stochastic
equicontinuity is established.

In practice it is common that data comes not from a density in Rd, but instead from a
manifold. It is suspected that a version of the results in this paper could apply in the manifold
setting. However, this requires a bootstrap that adapts to a possibly unknown manifold struc-
ture, similar to that found in [30]. Combined with the inherent challenges of working with
manifolds, this extension presents many technical hurdles. Alternatively, variance estimation
using subsampling or the jackknife may provide for consistent variance estimation in cases
where the support manifold of the data distribution is not known a priori. Subsampling in
this data context was initially developed in [25], however the resulting confidence sets are
given for the persistence diagram of the manifold, as opposed to the expected persistent Betti
number considered in this work. Furthermore, these confidence sets are conservative, stem-
ming from their reliance on the so-called “stability theorem”. However, beyond establishing
consistency for these procedures, several factors require theoretical consideration, including
both the choice of subsample size and rates of convergence.

Furthermore, in this work we have shown only consistency for bootstrap estimation to
a common limiting distribution. The rates of convergence in the 2-Wasserstein distance re-
garding the persistent Betti numbers rely on the unknown tail properties of the corresponding
radius of stabilization. Quantifying these tail properties is a challenging open problem, and
seems to be a key step towards an eventual rate calculation, as well as the previously men-
tioned process-level result.

Finally, there are several statistics of interest, including those based on the Delaunay com-
plex, which do not fit into the specific frameworks provided here. It may be that these statis-
tics still satisfy Theorem 2.7 in the general case, by techniques others than those provided
here.
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7. Technical results.

PROOF OF LEMMA 2.5. We refer to Appendix B.1 in the supplement for a reference
list of the general inequalities used here. Define two independent sets of random variables
(Ui)

∞
i=1

iid∼ F and (U∗i )∞i=1
iid∼ F . For N ∼ Pois(n), denote by Pn the Poisson process given

by {Ui}Ni=1, which has intensity nf over Rd, where f := dF/dλ. We will couple this Pois-

son process to Xn. {Ui}N∧ni=1 ∪ {U∗i }
(n−N)+

i=1 has the same distribution as Xn, thus we as-
sume that the two random variables are equal almost surely. For a given random variable
Ui or U∗i and L > 0, conditional on X ′ the probability of falling within BX′(L/ d

√
n) is∫

BX′ (L/
d
√
n) f dλ≤ (VdL

d/n) Mf(X ′). Here Vd is the volume of a unit ball in Rd and M is
the Hardy-Littlewood maximal operator such that Mf(x) := supr∈R+

(1/Vdr
d)
∫
Bx(r) f dλ.

Via the strong type Hardy-Littlewood maximal inequality, there exists a universal constant
C2 <∞ such that the unconditional probability is bounded by

VdL
d

n

∫
(Mf)f dλ≤ VdL

d

n
‖Mf‖2 ‖f‖2 ≤

C2VdL
d

n
‖f‖22 .

The expected number of points within BX′(L/ d
√
n) that contribute to Pn4Xn is then at

most

(7.1) E
[
|N − n|C2VdL

d

n
‖f‖22

]
≤ C2VdL

d

n
‖f‖22

√
Var [N ] =

C2VdL
d

√
n
‖f‖22 .

This expectation bounds the probability that Xn and Pn differ within BX′(L/ d
√
n). For suf-

ficiently large n, this bound can be made arbitrarily small.
Next, we will couple the Poisson process Pn with a conditionally homogeneous approxi-

mation. Let T be a homogeneous Poisson process on Rd×R+ with unit intensity. The point
process given by {Ui s.t. (Ui, Ti) ∈T, Ti ≤ nf(Ui)} is a nonhomogeneous Poisson process
with intensity nf . Without loss of generality, this process is assumed to equal Pn almost
surely. Define the point process Hn := {Ui s.t. (Ui, Ti) ∈T and Ti ≤ nf(X ′)}.

Conditional on X ′, Hn is a homogeneous Poisson process with intensity nf(X ′). The
number of observations within BX′(L/ d

√
n) that contribute to Pn4Hn follows a Poisson

distribution with parameter n
∫
BX′ (L/

d
√
n) |f − f(X ′)| dλ. Removing the conditioning on

X ′, the expected number is n
∫ ∫

Bx(L/ d
√
n) |f(y)− f(x)|f(x) dy dx

≥ P[(Pn4Hn)∩BX′(L/ d
√
n) 6= ∅]. We will show that this quantity can be made arbitrarily

small. Consider C , the set of Lebesgue points of f . For Cγ,R :=⋂
r<R {x ∈Rd s.t. (1/Vdr

d)
∫
Bx(r) |f − f(x)| dλ≤ γ}, we have Cc =

⋃
γ>0

⋂
R>0C

c
γ,R.

Thus for any γ > 0, by the Lebesgue Differentiation Theorem λ(
⋂
R>0C

c
γ,R) ≤ λ(Cc) = 0

for any γ > 0. Also, (1/Vdr
d)
∫
Bx(r) |f − f(x)| dλ is continuous in r, thus via the separabil-

ity of Rd Cγ may be expressed using only countably many sets. By continuity of measure
limγ→0 |Ccγ |= 0. We have:

n

∫ ∫
Bx(L/ d

√
n)
|f(y)− f(x)|f(x) dy dx

≤ γVdLd + n

∫
Ccγ

∫
Bx(L/ d

√
n)
|f(y)− f(x)|f(x) dy dx

= γVdL
d +

∫
B0(L/ d

√
n)

∫
Ccγ

|f(x+ t)− f(x)|f(x) dx dt
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≤ VdLd
(
γ + 2‖f‖2

√∫
Ccγ

f2 dλ

)
.(7.2)

This quantity does not depend on n. Because ‖f‖2 <∞, by the Dominated Convergence
Theorem this bound goes to 0 as γ→ 0. Combining with the previous steps, we have coupled
Xn and Hn to be equal with arbitrarily high probability.

By assumption, for any given a, b, δ > 0, L may be chosen so that there exists A ⊂ X
such that for any homogenous Poisson process Qλ on Rd with intensity λ ∈ [a, b] we have
ρ−1

0 ((L,∞])⊆A and P[Qλ ∈A]≤ δ.
Because d

√
n(Hn −X ′) is a conditionally homogeneous Poisson process, we have

P∗
[
ρ0

(
d
√
n
(
Hn −X ′

))
>L and f

(
X ′
)
∈ [a, b]

]
≤ P

[
d
√
n
(
Hn −X ′

)
∈A and f

(
X ′
)
∈ [a, b]

]
= E

[
P
[
d
√
n
(
Hn −X ′

)
∈A and f

(
X ′
)
∈ [a, b]

∣∣X ′]]
≤ δP

[
f
(
X ′
)
∈ [a, b]

]
≤ δ.

Combining the pieces, we have that

P∗
[
ρ0

(
d
√
n
(
Xn −X ′

))
>L

]
≤ P∗

[
ρ0

(
d
√
n
(
Hn −X ′

))
>L and f

(
X ′
)
∈ [a, b]

]
+ P

[
(Xn4Pn)∩BX′

(
L/ d
√
n
)
6= ∅
]

+ P
[
(Pn4Hn)∩BX′

(
L/ d
√
n
)
6= ∅
]

+ P
[
f
(
X ′
)
< a
]

+ P
[
f
(
X ′
)
> b
]
.

Choose a, δ→ 0 and b→∞. Because our previous choice of L is possibly unbounded, let
γ→ 0 and n→∞ so that the entire expression goes to 0. The result follows.

PROOF OF PROPOSITION 2.6. Our proof technique is inspired by that of Proposition 5.4
in [34]. We expand using a martingale difference sequence. Let {(Xi, Yi)}∞i=1 be iid such that
{Xi}∞i=1

iid∼ F and {Yi}∞i=1
iid∼G. For f := dF/dλ and g := dG/dλ, denote δ1 := ‖g− f‖1,

δ2 := ‖g− f‖2, and δp := ‖g− f‖p ≤ δ. By Proposition B.1 there are increasing functions
ξ1 : R+ → R+ and ξ2 : R+ → R+ depending only on f and p such that limα→0 ξ1(α) =
limα→0 ξ2(α) = 0, δ1 ≤ ξ1(δp)≤ ξ1(δ), and δ2 ≤ ξ2(δp)≤ ξ2(δ).

Each pair (Xi, Yi) can be identically coupled such that P[Xi 6= Yi] = 1
2δ1. Specifically,

conditional on the event {Xi 6= Yi}, Xi and Yi follow the respective marginal densities
2(f − g)+/δ1 and 2(g− f)+/δ1. For each j ∈ N, define Xj := {Xi}ji=1, Yj := {Yi}ji=1,
and Fj := σ({Xj ,Yj}), where σ signifies the generated σ-algebra. Likewise F0 := {Ω,∅}.
For (X ′, Y ′) an independent copy of the (Xi, Yi), let

X′n,j :=
{
X1, . . . ,Xj−1,X

′,Xj+1, . . .Xn

}
Y′n,j :=

{
Y1, . . . , Yj−1, Y

′, Yj+1, . . . , Yn
}
.

We apply the condensed notation Hn(S,T) := ψ( d
√
nS)− ψ( d

√
nT). Using the pairwise

orthogonality of a martingale difference sequence and the conditional version of Jensen’s
inequality,

Var

[
1√
n
Hn(Xn,Yn)

]
=

1

n
E

∣∣∣∣∣∣
n∑
j=1

E[Hn(Xn,Yn)|Fj ]−E
[
Hn(Xn,Yn)

∣∣Fj−1

]∣∣∣∣∣∣
2
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=
1

n
E

∣∣∣∣∣∣
n∑
j=1

E
[
Hn(Xn,Yn)−Hn

(
X′n,j ,Y

′
n,j

)∣∣Fj]
∣∣∣∣∣∣
2

=
1

n

n∑
j=1

E
[
E
[
Hn(Xn,Yn)−Hn

(
X′n,j ,Y

′
n,j

)∣∣Fj]2]
≤ E

[∣∣Hn(Xn,Yn)−Hn

(
X′n,`,Y

′
n,`

)∣∣2].(7.3)

The above holds for any 1≤ `≤ n. We have an upper bound for (7.3) of

2E
[∣∣Hn

(
Xn ∪X ′,Xn

)
−Hn

(
Yn ∪ Y ′,Yn

)∣∣2]
+ 2E

[∣∣Hn

(
Xn ∪X ′,X′n,j

)
−Hn

(
Yn ∪ Y ′,Y′n,j

)∣∣2]
= 4E

[∣∣Hn

(
Xn ∪X ′,Xn

)
−Hn

(
Yn ∪ Y ′,Yn

)∣∣2].(7.4)

We will decompose the expectation in (7.4) using the stabilization of ψ. For L > 0 we
have the following events:

A :=
{
Y ′ =X ′

}
B :=

{
Yn ∩BX′

(
L/ d
√
n
)

= Xn ∩BX′
(
L/ d
√
n
)}

CX∗ :=
{
D d
√
nX′
((

d
√
nXn

)
∩B d

√
nX′(L)

)
=D d

√
nX′
(
d
√
nXn

)}
CY ∗ :=

{
D d
√
nY ′
((

d
√
nYn

)
∩B d

√
nY ′(L)

)
=D d

√
nY ′
(
d
√
nYn

)}
.

Note that when all four are satisfied, Hn(Xn ∪X ′,Xn) =Hn(Yn ∪ Y ′,Yn). Let CX ⊆
CX∗ and CY ⊆ CY ∗ be measurable such that P[CcX ] = P∗[CcX∗] and P[CcY ] = P∗[CcY ∗]. For
any k ≥ 0 we have

E
[∣∣Hn

(
Xn ∪X ′,Xn

)
−Hn

(
Yn ∪ Y ′,Yn

)∣∣2]
= E

[∣∣Hn

(
Xn ∪X ′,Xn

)
−Hn

(
Yn ∪ Y ′,Yn

)∣∣2 1{Ac ∪Bc ∪CcX ∪CcY }
]

≤ 2
(
E
[
Hn

(
Xn ∪X ′,Xn

)2
1{Ac ∪Bc ∪CcX ∪CcY }

]
+E

[
Hn

(
Yn ∪ Y ′,Yn

)2
1{Ac ∪Bc ∪CcX ∪CcY }

])
≤ 2
(
E
[
Hn

(
Xn∪X ′,Xn

)2
1
{∣∣Hn

(
Xn∪X ′,Xn

)∣∣>k}]+k2 P[Ac∪Bc∪CcX∪CcY ](7.5)

+E
[
Hn

(
Yn∪Y ′,Yn

)2
1
{∣∣Hn

(
Yn∪Y ′,Yn

)∣∣>k}]+k2 P[Ac∪Bc∪CcX∪CcY ]
)

Because (E1) holds, it suffices to show that each of Ac, Bc, CcX , and CcY can be made to
occur with small probability, uniformly in G and n. Then k = kδ may be chosen such that
limδ→0 kδ =∞ and (7.5) goes to 0 uniformly.

For Ac, this is satisfied because P[X ′ 6= Y ′]≤ 1
2ξ1(δ). Consider Bc next. The sample pairs

which contribute to Xn∩BX′(L/ d
√
n) but not Yn∩BX′(L/ d

√
n) are those (Xi, Yi) for which

Xi 6= Yi and either ‖Xi −X ′‖ ≤ L/ d
√
n or ‖Yi −X ′‖ ≤ L/ d

√
n. Conditional on X ′, their

count follows a binomial distribution with expectation at most n
∫
BX′ (L/

d
√
n) |g− f | dλ ≤
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VdL
d(M|g− f |). Here M is the Hardy-Littlewood maximal operator. Removing the condi-

tioning on X ′, the expected count is at most

(7.6) VdL
d

∫
(M|g− f |)f dλ≤ VdLd ‖M|g− f |‖2 ‖f‖2 ≤C2VdL

dξ2(δ)‖f‖2 .

The above follows from the strong type Hardy-Littlewood maximal inequality for some
constant C2 <∞. This final expression provides an upper bound on P[Bc]. Then from (S1),
there exists a choice L= Lδ such that limδ→0L

d
δξ2(δ) = 0 and each of P[Bc]→ 0, P[CcX ]→

0, and P[CcY ]→ 0, uniform in n and G. The result follows.

PROOF OF THEOREM 2.7. Let any bounded, Lipschitz function v : Rk → R be given.
Then for some M > 0, v is bounded within [−M,M ] with a Lipschitz constant of M . For
any m ∈ N define the functional Vm as follows. We use the condensed notation ~Hm,j(S) :=

(ψj( d
√
mS)−E[ψj( d

√
mS)])/

√
m with ~Hm := (Hm,j)

k
j=1. For a probability distribution G

on Rd, let (Yi)i∈N
iid∼G and Ym := {Yi}mi=1. Define Vm(G) := E[v( ~Hm(Ym))].

First assuming that ~Hn(Xn)
d→Ψ, we have limn→∞ Vn(F ) =

∫
v dΨ. Now, let (X ′i)i∈N

iid∼F
be independent of F̂n and define X′m := {X ′i}mi=1 for any m ∈ N. Via Proposition 2.6 and
Chebyshev’s inequality, for any ε > 0 we have almost surely that

Vmn

(
F̂n

)
= E

[
v
(
~Hmn

(
X∗n,mn

))∣∣∣Xn

]
= E

[
v
(
~Hmn

(
X∗n,mn

))
1

{∥∥∥ ~Hmn

(
X∗n,mn

)
− ~Hmn

(
X′mn

)∥∥∥ ≤ ε}∣∣∣Xn

]
+E

[
v
(
~Hmn

(
X∗n,mn

))
1

{∥∥∥ ~Hmn

(
X∗n,mn

)
− ~Hmn

(
X′mn

)∥∥∥ > ε
}∣∣∣Xn

]
≤ E

[
v
(
~Hmn

(
X′mn

))]
+Mε+M

k∑
j=1

P
[∣∣Hmn,j

(
X∗n,mn

)
−Hmn,j

(
X′mn

)∣∣> ε√
k

∣∣∣∣Xn

]

≤ E
[
v
(
~Hmn

(
X′mn

))]
+Mε+

Mk

ε2

k∑
j=1

γj

(∥∥∥f̂n − f∥∥∥
p

)
.

Here for each j ∈ {1, ..., k}, γj : R+→ R+ is as given in Proposition 2.6 applied to ψj .
Similarly, almost surely

Vmn

(
F̂n

)
≥ E

[
v
(
~Hmn

(
X′mn

))]
−Mε− Mk

ε2

k∑
i=1

γj

(∥∥∥f̂n − f∥∥∥
p

)
.

Because ‖f̂n − f‖p → 0, we have that the lower bound for Vmn
(F̂n) converges to∫

R v dΨ − Mε and the upper bound converges to
∫
R v dΨ + Mε, either in probability

or almost surely, depending on assumptions. Since this holds for any ε > 0, we have that
Vmn

(F̂n)→
∫
R v dΨ in probability (or a.s.).

Now we will show the converse direction. By similar arguments, for any ε > 0 we have

Vmn
(F )

= E
[
E
[
v
(
~Hmn

(
X′mn

))∣∣∣Xn

]]
≤ E

[
E
[
v
(
~Hmn

(
X∗n,mn

))∣∣∣Xn

]]
+Mε+M E

[
min

{
k

ε2

k∑
i=1

γj

(∥∥∥f̂n − f∥∥∥
p

)
,1

}]
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and

Vmn
(F )

≥ E
[
E
[
v
(
~Hmn

(
X∗n,mn

))∣∣∣Xn

]]
−Mε−M E

[
min

{
k

ε2

k∑
i=1

γj

(∥∥∥f̂n − f∥∥∥
p

)
,1

}]
.

Each expectation involves only bounded random variables, thus the lower bound con-
verges to

∫
R v dΨ − Mε and the upper bound to

∫
R v dΨ + Mε, assuming either

E[v( ~Hmn
(X∗n,mn

))
∣∣Xn]→

∫
R v dΨ in probability or almost surely. Since this holds for any

ε > 0, we have that limn→∞ Vmn
(F ) =

∫
R v dΨ. Since our initial choice of v was arbitrary,

the desired result follows.

Acknowledgements. Thank you to the reviewers for their helpful comments and thor-
ough examination of this work.

Benjamin Roycraft was partially supported by the National Science Foundation (NSF),
grant number DMS-1148643. Johannes Krebs was partially supported by the German Re-
search Foundation (DFG), grant number KR-4977/2-1. Wolfgang Polonik was partially sup-
ported by the National Science Foundation (NSF), grant number DMS-2015575.

Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan
Foundation, the U.S. Department of Energy Office of Science, and the Participating Institu-
tions. SDSS-IV acknowledges support and resources from the Center for High-Performance
Computing at the University of Utah. The SDSS web site is www.sdss.org.

SUPPLEMENTARY MATERIAL

Supplement to “Bootstrapping Persistent Betti Numbers and Other Stabilizing
Statistics”
(; .pdf). A data application is made to a cosmic web dataset from the Sloan Digital Sky
Survey (SDSS). Proofs for results in the main paper are included. Furthermore, we give ex-
tended results beyond those presented in the main text. Specifically, we make a more detailed
examination of the 2-Wasserstein distance in Proposition 2.6 for all statistics considered,
and provide a proof for the Lp-convergence of kernel density estimation. Specific generating
functions for the simulation study of Section 5 are also provided.
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