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APPENDIX A: DATA ANALYSIS

In this section we show how smoothed bootstrap estimation performs on a real dataset.
Source code is available at github.com/btroycraft/stabilizing_statistics_bootstrap [8]. We
consider a selection of galaxies from the Sloan Digital Sky Survey [1], chosen from a se-
lection of sky with right ascension values between 100◦ and 270◦ and declination between
−7◦ and 70◦. Three slices of galaxies were considered, separated by redshift, a measure of
radial distance from the solar system. The selections consist of galaxies with red-shift within
(0.025,0.026), (0.027,0.028), and (0.029,0.030), respectively. These slices were chosen to
investigate the topological properties of the cosmic web across time. In this case, due to
the rough homogeneity of the web at large scales, few significant topological deviations are
expected.

Subset limits were chosen to maintain computational feasibility and avoid measurement
gaps. In an initial cleaning step, each slice was flattened using an area-preserving cylindrical
projection and trimmed so that the slices share a common boundary with the same number
of galaxies (2374) per slice. Angular units are converted to distances in Megaparsecs (Mpc)
based on the redshift and Hubble’s constant.

The distribution of galaxies in each dataset is modeled by a random sample from some
bivariate probability distribution, where the location of each galaxy is drawn independently
from the overall distribution. As a part of the model framework, the effect of gravitational
interaction manifests via a macroscopic change in the matter distribution, rather than as de-
pendency between individual galaxies.

Following the recommendation of [3], we estimate the density of the matter distribution
using the adaptive bandwidth selector described in [2]. This adaptive bandwidth selector was
chosen to accommodate for the large variations in density present within astronomy data. The
selectors considered in Section 5 do not perform well in this context, often oversmoothing
by a large margin. A pilot density estimator was constructed based on the “Hpi.diag” plug-in
bandwidth selector and a Gaussian kernel.

Visualizations of the density estimates are provided in Figure 3. Generally, the fit ade-
quately captures the filament structures present in the raw data. Within the persistence dia-
grams, the mass of features present close to the main diagonal represents small-scale holes
between neighboring galaxies, whereas features farther from the diagonal represent the large-
scale holes formed by relatively disparate galaxies.

We apply the Vietoris-Rips complex to each of the slices, and calculate a selection of per-
sistent Betti numbers in dimensions q = 0 and q = 1. The 0-dimensional features summarize
cluster and filament structure, whereas the 1-dimensional features describe voids and depres-
sions. The transformed datasets and persistence diagrams in dimension q = 1 can be seen in
Figure 3. We consider the Betti numbers βr0 and βr1 , as well as the persistent Betti numbers
βr,r+1
1 for r = 3, . . . ,30 Mpc. Filtration parameters for the persistent Betti numbers were

chosen to lie close to the diagonal r = s, excluding features with a lifetime less than 1 Mpc.
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FIG 3. Top row: Transformed point clouds. Middle row: Density estimates using adaptive bandwidth. Bottom
row: Persistence diagrams in dimension q = 1 for the Vietoris-Rips complex. Columns from left to right: Galaxies
with redshifts within (0.025,0.026), (0.027,0.028), and (0.029,0.030), respectively. Axis units are given in
Megaparsecs (Mpc).

We use bootstrap estimation to construct nominal 98% confidence intervals for the popula-
tion mean values, both pointwise and simultaneous within each regime across r = 3, . . . ,30
Mpc. The number of bootstrap replicates used wasB = 20,000, with results seen in Figure 4.

In feature dimension q = 0, the curves show similar behavior across the slices. Consistent
with our empirical results, similar Betti curves are expected when the within-filament matter
distribution and overall frequency of filaments for each sample are equal. For feature dimen-
sion q = 1, more variation is present. However, as can be seen from the bootstrap confidence
intervals, much of this variation is explained by random fluctuation. For example, while a
notable depression around the scale of 8 Mpc exists for the third slice, it is still within the
margins of error provided. From this analysis, we do not find statistically significant differ-
ences in the topological properties of the three samples over the range of filtration parameters
considered. The difference in topological structure seen within each pair of Betti curves is
within the margin of error provided by the bootstrap confidence intervals, especially consid-
ering the wider simultaneous intervals.

The consistency shown in Section 4.4 for bootstrap estimation applies only for those fea-
tures within the “body” of topological features, being those occurring at a local scale. Fea-
tures with large persistence or ones that appear at large diameter are not accounted for in
this, as their relative weight is small within the persistent Betti numbers. As such, our anal-
ysis does not preclude differences in topology at a large relative scale, describing the largest
galactic structures.
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FIG 4. Betti curves for the Vietoris-Rips complex. Top row: Betti numbers βr0 . Middle row: Betti numbers βr1 .

Bottom Row: persistent Betti numbers βr,r+1
1 . Columns correspond with those of Figure 3. Axis units are given in

Megaparsecs (Mpc). For each of r = 3, . . . ,30 Mpc, simultaneous bootstrap confidence bands are given in gray,
drawn from bootstrap samples of size B = 20,000. Likewise, pointwise intervals are given in black.

APPENDIX B: PROOF OF MAIN RESULTS

B.1. Necessary Inequalities and Probability Results. Throughout these proofs, we
will make ample use of the Hölder, Jensen, and Minkowsky inequalities, along with the fol-
lowing. For brevity, these inequalities may be used implicitly and in combination. Form ∈N,
{xi}mi=1 ⊂R, and k ≥ 1, ∣∣∣∣∣

m∑
i=1

xi

∣∣∣∣∣
k

≤mk−1

(
m∑
i=1

|xi|k
)
.

Likewise for 0≤ k ≤ 1 ∣∣∣∣∣
m∑
i=1

xi

∣∣∣∣∣
k

≤
m∑
i=1

|xi|k.

Next, for any function f : Rd→R and 1≤ a < b < c≤∞,∫
|f |b dλ≤

(∫
|f |a dλ

) c−b

c−a
(∫
|f |c dλ

) b−a

c−a

.

Finally, for a locally-integrable function f : Rd→ R, the Hardy-Littlewood operator M is
defined as Mf(x) := supr>0 (1/Vdr

d)
∫
Bx(r)

|f |dλ. We have two maximal inequalities for M

relating the behavior of Mf to f . The weak-type inequality states that there exists a constant
C1 depending only on d such that

∫
1{Mf > k} ≤ (C1/k)‖f‖1. The strong-type inequality
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states that, for any 1 < p ≤ ∞ there exists a constant Cp depending only on p such that
‖Mf‖p ≤Cp‖f‖p. These constants appear in several of the proofs throughout this work.

PROPOSITION B.1. Let f and g be two probability density functions on Rd with ‖f‖p <
∞ for some p > 1. Then for any q ∈ [1, p) there exists a continuous, increasing function
ξ : R+→R+ depending only on f , p, and q such that limα→0 ξ(α) = 0 and

‖f − g‖q ≤ ξ
(
‖f − g‖p

)
.

PROOF. Let λ denote the Lebesgue measure on Rd. Via Markov’s inequality, for any a > 0
we have

1

2

∫
|f − g|dλ=

∫
|f − g|1{g < f}dλ

=

∫
|f − g|(1{f − a≤ g < f}+ 1{g ≤ f − a}) dλ

≤
∫

min{f, a}+ |f − g|1{|f − g| ≥ a}dλ

≤
∫

min{f, a}dλ+
1

ap−1

∫
|f − g|p dλ.(1)

By the Dominated Convergence Theorem, lima→0

∫
min{f, a}dλ= 0. Thus a→∞ may

be chosen such that both terms of (1) go to 0 as α→ 0. Then for ξ∗ : R+ → R+ where
ξ∗(α) := infa>0 2(

∫
min{f, a}dλ+ αp/ap−1) we have ‖g− f‖1 ≤ ξ∗(‖g− f‖p).

Now let q ∈ [1, p) be given. The desired result holds for ξ : R+→ R+ such that ξ(α) :=

ξ∗(α)(p−q)/(q(p−1))α(p(q−1))/(q(p−1)). We have

‖g− f‖q ≤ ‖g− f‖
p−q

q(p−1)

1 ‖g− f‖
q−1

q(p−1)

p

≤ ξ∗
(
‖g− f‖p

) p−q

q(p−1) ‖g− f‖
q−1

q(p−1)

p

= ξ
(
‖g− f‖p

)
.

PROPOSITION B.2. Let (Ω, σ(µ), µ) be a measure space and η an extension of µ to
σ(η)⊇ σ(µ). Then given a σ(µ)-measurable functionX : Ω→R+ there exists a continuous,
increasing function ζ : R+→R+ depending only onX and µ such that limα→0 ζ(α) = 0 and∫

A
X dη ≤ ζ(η(A)).

PROOF. Let kα := inf {k ≥ 0:
∫
1{X > k}dµ≤ α}. For any σ(η)-measurable set A, we

have ∫
A
X dη =

∫
A
X(1{X > kα}+ 1{X ≤ kα}) dη

≤
∫
A
X 1{X > kα}+ kα 1{X ≤ kα}dη

=

∫
A
X 1{X > kα}dη+ kα

∫
Ac

1{X > kα}dη
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+ kα

(∫
A
1{X ≤ kα}dη−

∫
Ac

1{X > kα}dη

)
≤
∫
X 1{X > kα}dη+ kα

(
η(A)−

∫
1{X > kα}dη

)
.

Because X is σ(µ)-measurable and η(A) ≤ α, we have a final bound of ξ(α) :=∫
X 1{X > kα}dµ + kα(α−

∫
1{X > kα}dµ). Considering first only those α such that∫

1{X > kα}dµ = α, the second term of ξ vanishes and limα→0 ξ(α) = 0 by the Domi-
nated Convergence Theorem. Linear interpolation is applied via the second term whenever
1{X > kα}dµ < α, extending to a continuous bound defined for all α≥ 0.

B.2. Proofs of Section 2.2.

PROPOSITION 2.5. For S a simple point process taking values in X (Rd), let ψ stabilize
on S almost surely. Then ψ stabilizes on S in probability.

PROOF. Let ρ be a radius of stabilization satisfying Definition 2.4. Likewise, let D∞

be a corresponding terminal addition cost. For any ρ(S) ≤ l < ∞, D(S∩Bz(l)) =
D(S∩Bz(ρ(S))) = D∞(S). Thus {D(S∩Bz(l)) 6=D∞(S)} ⊆ {ρ(S)> l}, and conse-
quently P∗[D(S∩Bz(l)) 6=D∞(S)]≤ P∗[ρ(S)> l]→ 0. We see that ψ stabilizes in proba-
bility on S with terminal addition cost D∞(S).

PROPOSITION 2.7. For R the space of locally-determined radii of stabilization for ψ
centered at z ∈ Rd, let ρ∗ : X (Rd)→ [0,∞] such that ρ∗(S) = infρ∈R ρ(S). Then ρ∗ is a
locally determined radius of stabilization for ψ centered at z.

PROOF. If all possible radii are infinite, the result follows trivially. Else for S,T ∈
X (Rd) suppose ρ∗(S) <∞ with S ∩ Bz(ρ∗(S)) = T ∩ Bz(ρ∗(S)). Since S and T have
no accumulation points, for any ε > 0 sufficiently small, we have S ∩ Bz(ρ∗(S) + ε) =
T ∩ Bz(ρ∗(S) + ε). There exists a locally determined radius of stabilization ρ such that
ρ(S) ≤ ρ∗(S) + ε. As S ∩ Bz(ρ∗(S) + ε) = T ∩ Bz(ρ∗(S) + ε) with ρ(S) ≤ ρ∗(S) + ε,
we have that S ∩Bz(ρ(S)) = T ∩Bz(ρ(S)). Thus ρ(S) = ρ(T ) by the local-determination
criterion. Then ρ∗(T ) ≤ ρ(T ) = ρ(S) ≤ ρ∗(S) + ε. Since the choice of ε was arbitrary,
we have ρ∗(T ) ≤ ρ∗(S). Thus, S ∩ Bz(ρ∗(T )) = T ∩ Bz(ρ∗(T )). By similar arguments,
ρ∗(S)≤ ρ∗(T ). Combining, ρ∗(S) = ρ∗(T ) must hold, and the result follows.

B.3. Proofs of Section 2.3.

LEMMA 2.9. Let ψ satisfy (E2). Then the following hold:

1. If ‖f‖max{2u+1,2} <∞ then ψ satisfies (E1).
2. If ‖f‖max{p,2} <∞ for some p > 2u+ 1 then ψ satisfies Statement 2.8.

PROOF. We begin with some facts from elementary probability. LetBn ∼Binom (n,µ/n).
Denote pj(µ) := µje−µ/j!. For any j > µ, P[Bn = j] ≤ pj(µ), achieving equality in the
limit as n → ∞. Thus the upper tail probability and moments of Bn are bounded by
those of a Poisson distribution with the same expectation. We have E[Bq

n 1{Bn ≥ k}] ≤
µq 1{µ≤ k}+

∑∞
j=0 j

qpq(µ)1{j ≥ k}1{j > µ} ≤ µq 1{k ≤ µ}+
∑∞

j=0 j
qpq(µ)1{j ≥ k}

for any q ∈R, k ∈N.
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Furthermore, for any q ∈ [0,∞),
∑∞

j=0 j
qpj(µ) = limn→∞E[Bq

n] ≤ supn∈NE[Bq
n]. We

bound this quantity via Corollary 3 [6]. There exists a universal constant K > 0 such that

sup
n∈N

E[Bq
n]≤

(
K

q

log (q)

)q
max{µ,µq} ≤

(
K

q

log (q)

)q
(µ+ µq).

We continue with these facts established. Define In := #{Yn ∩BY ′(R/ d
√
n)}. Con-

ditional on Y ′, In follows a binomial distribution with expectation n
∫
BY ′ (R/

d
√
n) g dλ ≤

VdR
dMg(Y ′), where Vd is the volume of a unit ball in Rd, g := dG/dλ, and M is the

Hardy–Littlewood maximal operator such that Mg(x) := supr∈R+
(1/Vdr

d)
∫
Bx(r)

g dλ.
We may prove both conclusions with a single argument. Let p≥ 2u+1 and ‖f‖max{p,2} <

∞. Note because ‖f‖1 = 1, both ‖f‖p <∞ and ‖f‖2 <∞. Because (E2) holds, we have that
|D d
√
nY ′(

d
√
nYn)|(p−1)/u ≤ 2(p−1)/u−1U (p−1)/u(1 + Ip−1n ). Then for k = (k′/U − 1)1/u,

E
[∣∣D d

√
nY ′
(

d
√
nYn

)∣∣ p−1

u 1
{∣∣D d

√
nY ′
(

d
√
nYn

)∣∣> k′
}]

≤ 2
p−1

u
−1U

p−1

u

(
P[In > k] +E

[
Ip−1n 1{In > k}

])
≤ 2

p−1

u U E
[
Ip−1n 1{In > k}

]
.(2)

Denote δ2 := ‖g− f‖2 and δp := ‖g− f‖p. It then suffices to show that as δmax{p,2}→ 0

there exists a choice k→∞ such that E[Ip−1n 1{In > k}]→ 0 uniformly in n and G. For a
given k ≥ 0, the expectation in (2) is bounded above by

(3)
∫ (VdRdMg

)p−1
1

{
VdR

dMg ≥ k
}

+

∞∑
j=0

jp−1pj

(
VdR

dMg
)
1{j ≥ k}

g dλ.

Consider the first term in (3). we have∫
(Mg)p−1 1

{
VdR

dMg > k
}
g dλ≤

∫
(Mg)p−1

(
|g− f |+ f 1

{
VdR

dMg ≥ k
})

dλ

≤ ‖Mg‖p−1p

(
δp +

(∫
fp 1

{
VdR

dMg > k
}

dλ

) 1

p

)
.

From the strong type Hardy-Littlewood maximal inequality, there exists a constant Cp <
∞ depending on p and d such that ‖Mg‖p ≤ Cp‖g‖p ≤ Cp(‖f‖p + δp). Likewise, because
‖g‖1 = 1, from the weak type Hardy-Littlewood maximal inequality, there is a constant
C1 <∞ depending only on d such that

∫
1{VdRdMg > k}dλ≤ C1VdR

d/k. Thus because
‖f‖p <∞, Proposition B.2 gives that

∫
fp 1{VdRdMg > k}dλ≤ ζp(C1VdR

d/k) for some
function ζp : R+→R+ depending only on f and p such that limα→0 ζp(α) = 0.

Now consider the second term in (3):∫ ∞∑
j=0

jp−1pj

(
VdR

dMg
)
1{j ≥ k}g dλ

≤
∫ ∞∑

j=0

jp−1pj

(
VdR

dMg
)

(|g− f |+ f 1{j > k}) dλ.

Separating, we have∫ ∞∑
j=0

jp−1pj

(
VdR

dMg
)
|g− f |dλ
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≤
(
K

p− 1

log (p− 1)

)p−1 ∫ (
VdR

dMg+
(
VdR

dMg
)p−1)

|g− f |dλ

≤
(
K

p− 1

log (p− 1)

)p−1(
VdR

dC2 ‖g‖2 δ2 +
(
VdR

dCp ‖g‖p
)p−1

δp

)
≤
(
K

p− 1

log (p− 1)

)p−1(
VdR

dC2(‖f‖2 + δ2)δ2 +
(
VdR

dCp

(
‖f‖p + δp

))p−1
δp

)
.

Because the Poisson distribution is divisible,∫ ∞∑
j=0

jp−1pj

(
VdR

dMg
)
1{j > k}f dλ

≤ 2p−2

(∫ ∞∑
j=0

jp−1pj

(
VdR

dM|g− f |
)
f dλ

+

∫ ∞∑
i=0

∞∑
j=0

jp−1pi

(
VdR

dM|g− f |
)
pj

(
VdR

dMf
)
1{i+ j > k}f dλ

)
.

We have ∫ ∞∑
j=0

jp−1pj

(
VdR

dM|g− f |
)
f dλ

≤
(
K

p− 1

log (p− 1)

)p−1(
VdR

dC2δ2 ‖f‖2 +
(
VdR

dCpδp

)p−1
‖f‖p

)
.

From Markov’s inequality∫ ∞∑
i=0

∞∑
j=0

pi

(
VdR

dM|g− f |
)
pj

(
VdR

dMf
)
1{i+ j > k}f dλ

≤ 1

k

∫ ∞∑
j=0

j
(
pj

(
VdR

dM|g− f |
)

+ pj

(
VdR

dMf
))
f dλ


≤ VdR

dC2

k
(δ2 + ‖f‖2)‖f‖2 .

Likewise ∫ ∞∑
j=0

jp−1pj

(
VdR

dMf
)
f dλ

≤
(
K

p− 1

log (p− 1)

)p−1(
VdR

dC2 ‖f‖22 +
(
VdR

dCp

)p−1
‖f‖pp

)
.

Then, via Proposition B.2 there exists an increasing function ζ : R+→R+ depending only
on f with limα→0 ζ(α) = 0 and∫ ∞∑

i=0

∞∑
j=0

jp−1pi

(
VdR

dM|g− f |
)
pj

(
VdR

dMf
)
1{i+ j > k}f dλ

≤ ζ
(
VdR

dC2

k
(δ2 + ‖f‖2)‖f‖2

)
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Via Proposition B.1 there exist increasing functions ξ2 : R+ → R+ and ξp : R+ → R+

depending only on f and max{p,2} with limα→0 ξ2(α) = limα→0 ξp(α) = 0 such that
δ2 ≤ ξ2(δmax{p,2}) and δp ≤ ξp(δmax{p,2}), with one of ξ2 or ξp being the identity function.

Combining all of the preceding pieces yields the required uniform bound for (2). As
δmax{2,p}→ 0, k→ 0 may be chosen such that the overall bound is made arbitrarily small.
When p= 2u+ 1, we see that (E1) holds.

Likewise, for p > 2u+ 1 and any K > 0,

E
[∣∣D d

√
nY ′
(

d
√
nYn

)∣∣ p−1

u

]
≤K

p−1

u +E
[∣∣D d

√
nY ′
(

d
√
nYn

)∣∣ p−1

u 1
{∣∣D d

√
nY ′
(

d
√
nYn

)∣∣>K
}]
.

As demonstrated, this quantity may be bounded uniformly in G and n. Thus, Statement 2.8
holds for a= (p− 1)/u.

LEMMA 2.10. Let ψ satisfy (S2). Then if ‖f‖2 <∞, ψ satisfies (S1).

PROOF. Let {Xi}i∈N
iid∼ F and {Yi}i∈N

iid∼G with X ′ ∼ F and Y ′ ∼ G independent
copies. Denote δ1 := ‖g− f‖1 and δ2 := ‖g− f‖2, where f := dF/dλ and g := dG/dλ.
Define Xn := {Xi}ni=1 and Yn := {Yi}ni=1. By Proposition B.1, there exists a continu-
ous, increasing function ξ : R+→ R+ depending only on f such that limα→0 ξ(α) = 0 and
δ1 ≤ ξ(δ2). It may be assumed that {(Xi, Yi)}i∈N are iid coupled random variables with
P[Xi 6= Yi] = δ1/2 for all i ∈N.

For L> 0, define the following events:

A :=
{
Y ′ =X ′

}
B :=

{
Yn ∩BX′

(
L
d
√
n

)
= Xn ∩BX′

(
L
d
√
n

)}
C∗ :=

{
ρ d
√
nX′
(

d
√
nXn

)
≤ L

}
.

Let C ⊆ C∗ be measurable such that P[Cc] = P∗[Cc∗]. By the local-definition crite-
rion, Definition 2.6, A ∩B ∩ C ⊆ {ρ d

√
nY ′(

d
√
nYn)≤ L}. Then P∗[ρ d

√
nY ′(

d
√
nYn)>L]≤

P[Ac] + P[Bc] + P[Cc]. Bounding each piece in turn, P[Ac] = P[X ′ 6= Y ′]≤ ξ(δ2)/2. Also,
by (S2), we have a bound for P[Cc] which holds uniformly in n and can be made arbitrarily
small as L→∞.

It remains to be shown that Bc occurs with small probability uniformly in n and G. As
shown in the proof of Proposition 2.12, the probability that Xn and Yn fail to coincide within
BX′(L/ d

√
n) is at most C2VdL

dδ2‖f‖2 for some constant C2 <∞. As Ldδ2→ 0 we may
choose L→∞ such that both our bounds for P[Bc] and P[Cc] become arbitrarily small.
Combining, we see that (S1) is satisfied.

B.4. Proofs of Section 4.3.

LEMMA 4.1. Let ‖f‖2 <∞ and K satisfy (K2), (D2), and (D3). Then βr,sq (K) satisfies
(S2) for any r ∈R, s ∈R, and q ≥ 0.

PROOF. We start by defining a crude locally-determined radius of stabilization. Let K be
either Kr or Ks. Denote φ = max{φ(r), φ(s)} as given by (D2). For z ∈ Rd, S ∈ X (Rd),
and a > φ, consider the connected components in K(S ∩Bz(a)) and K((S ∩Bz(a))∪ {z})
with at least one simplex entirely contained within Bz(φ). By (D2), if these components
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are entirely contained within Bz(a− φ), no simplices will be added or removed from them
within K(S ∩Bz(b)) or K((S ∩Bz(b))∪ {z}) for any b > a. This property holds for both
Ks or Kr . The persistent Betti numbers are additive with respect to connected components,
thus the add-z cost is entirely defined by those components altered by the inclusion of z,
which necessarily m ust include one simplex withinBz(φ). As such, a is a locally determined
radius of stabilization for S in this case. Any changes to the simplices outside of a must
contribute to different connected components, and thus do not influence the add-z cost.

Now, Xn contains n total points. Including one point within Bz(φ), the longest possible
chain of n connected points reaches at most a radius of nφ. Therefore, ρ d

√
nX′(

d
√
nXn) =

(n+ 1)φ is a locally-determined radius of stabilization on d
√
nXn centered at d

√
nX ′, as

shown in the previous paragraph. However, since this radius grows with n, it alone cannot
provide for the desired result.

Given (D2) and (D3), by Theorem 4.3 [5] and the proof thereof, there exists a locally-
determined radius of stabilization ρ∗0 for βr,sq (K) centered at 0 such that the conditions of
Lemma 2.11 are satisfied. It must be noted that the original statement of the referenced lemma
does not give this result directly. However, a careful analysis of the provided proof yields this
more general result with minimal additions, and is not restated here. By (K2), we may define
a radius of stabilization ρ∗z for βr,sq centered at z ∈Rd with ρ∗z(S) = ρ∗0(S − z). Thus, for any
δ > 0, there exists an Lδ <∞ and nδ <∞ such that P[ρ∗d√nX′(

d
√
nXn)]≤ δ for all n≥Nδ .

Denote by Pz(S) the union of all connected components in either K(S) or K(S ∪ {0})
with at least one simplex entirely contained within Bz(φ). For any center point z ∈ Rd,
define ρz : X → [0,∞] with ρz(S) = min{diam (Pz(S)) + φ,ρ∗(S − z)}. We have that ρz
is a locally-determined radius of stabilization.

For n < nδ , we have that ρ d
√
nX′(

d
√
nXn) ≤ (nδ + 1)φ almost surely. For n ≥ nδ ,

ρ d
√
nX′(

d
√
nXn)≤ ρ∗d√nX′(

d
√
nXn)≤ Lδ with probability at least 1− δ. Therefore

supn∈N P[ρ d
√
nX′(

d
√
nXn)>max{Lδ, (nδ + 1)φ}]≤ δ, and the result follows.

B.5. Proofs of Section 4.4.

COROLLARY 4.3. Let q ≥ 0 and p≥ 2q + 3. Let K satisfy (K1), (K2), (D1), and (D3).
Then for any given ~r, ~s, Statement 4.2 holds for β~r,~sq .

PROOF. For given r, s ∈ R, we will verify that assumption (E2) is satisfied for ψ =
βr,sq (K). Let Yn = {Yi}ni=1 be iid and Y ′ an independent copy. By the Geometric Lemma 3.1,
a bound for the change in persistent Betti numbers when { d

√
nY ′} is added to d

√
nYn is given

by the number of new simplices introduced to the corresponding complexes. By (K1), (D1), it
suffices to count the number of points within φ := max{φ(r), φ(s)} of d

√
nY ′, the combina-

tions of which include any possible new simplices. Let In =
∑n

i=1 1{‖Yi − Y ′‖ ≤ φ/ d
√
n}.

For any a > 2 we have∣∣βr,sq (K( d
√
n
(
Yn ∪

{
Y ′
})))

− βr,sq
(
K
(

d
√
nYn

))∣∣a
≤
∣∣#{Kr

q

(
d
√
n
(
Yn ∪

{
Y ′
}))
\Kr

q

(
d
√
nYn

)}
+ #

{
Ks
q+1

(
d
√
n
(
Yn ∪

{
Y ′
}))
\Ks

q+1

(
d
√
nYn

)}∣∣a
≤
∣∣∣∣(Inq

)
+

(
In
q+ 1

)∣∣∣∣a
=

(
In + 1

q+ 1

)a
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≤ 1

((q+ 1)!)a
(In + 1)a(q+1)

≤ 2a(q+1)−1

((q+ 1)!)a

(
Ia(q+1)
n + 1

)
.

In this caseR= φ, Ua ≤ 2a(q+1)−1/((q+ 1)!)a and ua = a(q+ 1). (E1) then follows from
Lemma 2.9 for p ≥ a(q+ 1) + 1 > 2q + 3. As (K1) and (D1) together imply (D2), (S2) is
satisfied as shown in Lemma 4.1. Then (S1) follows from Lemma 2.10. Finally, an application
of Theorem 2.13 gives the desired result.

Referring to Proposition 2.12 and the proof thereof, for p <∞, using a= (p− 1)/(q+ 1)
we achieve an optimal rate for γε of

O

(
δ
1− 2q+2

p−1
ε

)
.

Details of the calculation are omitted here. For p =∞, using a = aε = 2 − log (δε) we
achieve an optimal rate of

O

(
δε

(
− log (δε)

log (− log (δε))

)2q+2
)
.

Both of these rates depend on δε, the upper bound for the total probability found in the
proof of Proposition 2.12. The techniques found in the proofs of Lemma 2.9 and Proposi-
tion 2.12 allow for a bound on δε, provided a tail bound for supn∈N ρ0(

d
√
n(Yn − Y ′)). At

this time, such a bound is unavailable, thus no explicit rate calculation is possible.

COROLLARY 4.4. Let q ≥ 0 and p ≥ 2q + 5. Let K satisfy (K2), (D2), and (D3). Then
for any given ~r, ~s, Statement 4.2 holds for β~r,~sq .

PROOF. The proof follows exactly that of Corollary 4.3, thus we will omit many replicated
details. Let Yn = {Yi}ni=1 be iid and Y ′ an independent copy. Define φ := max{φ(r), φ(s)}.

Since we do not assume (K1) in this case, the addition of d
√
nY ′ to the complex may both

add and remove simplices, but only within B d
√
nY ′(φ) by (D2). Any additional simplices

may have d
√
nY ′ as a vertex, whereas any removed simplices may only have vertices within

d
√
nYn. For In =

∑n
i=1 1{‖Yi − Y ′‖ ≤ φ/ d

√
n}, via the Geometric Lemma 3.1 we have∣∣βr,sq (K( d

√
n
(
Yn ∪

{
Y ′
})))

− βr,sq
(
K
(

d
√
nYn

))∣∣
≤
∣∣βr,sq (K( d

√
n
(
Yn ∪

{
Y ′
}))
∪K

(
d
√
nYn

))
− βr,sq

(
K
(

d
√
n
(
Yn ∪

{
Y ′
})))∣∣

+
∣∣βr,sq (K( d

√
n
(
Yn ∪

{
Y ′
}))
∪K

(
d
√
nYn

))
− βr,sq

(
K
(

d
√
nYn

))∣∣
≤ #

{
Kr
q

(
d
√
nYn

)
\Kr

q

(
d
√
n
(
Yn ∪

{
Y ′
}))}

+ #
{
Ks
q+1

(
d
√
nYn

)
\Ks

q+1

(
d
√
n
(
Yn ∪

{
Y ′
}))}

+ #
{
Kr
q

(
d
√
n
(
Yn ∪

{
Y ′
}))
\Kr

q

(
d
√
nYn

)}
+ #

{
Ks
q+1

(
d
√
n
(
Yn ∪

{
Y ′
}))
\Ks

q+1

(
d
√
nYn

)}
≤
(

In
q+ 1

)
+

(
In
q+ 2

)
+

(
In + 1

q+ 1

)
+

(
In + 1

q+ 2

)
≤ 2

(
In + 2

q+ 2

)
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≤ 2q+3

(q+ 2)!
(In + 1)q+2.

Thus for any a > 2,∣∣βr,sq (K( d
√
n
(
Yn ∪

{
Y ′
})))

− βr,sq
(
K
(

d
√
nYn

))∣∣a ≤ 2(a+1)(q+2)

((q+ 2)!)a

(
Ia(q+2)
n + 1

)
.

(E2) is satisfied for R = φ, Ua = (2(a+1)(q+2))/((q+ 2)!)a, and ua = a(q+ 2). Thus for
p ≥ a(q+ 2) + 1 > 2q + 5, (E1) follows by Lemma 2.9. (S2) and thus (S1) follow from
Lemmas 4.1 and 2.10, respectively. An application of Theorem 2.13 gives the final result.

For the rate in Proposition 2.12, for p <∞, using a = (p− 1)/(q+ 2) we achieve an
optimal rate for γε of

O

(
δ
1− 2q+4

p−1
ε

)
.

For p=∞, using aε = 2− log (δε) we achieve an optimal rate of

O

(
δε

(
− log (δε)

log (− log (δε))

)2q+4
)
.

COROLLARY 4.5. Let m<∞ and p≥ 2m+ 3. Let K be a filtration of simplicial com-
plexes satisfying (K1), (K2), (D1), (D3), and (D4). Then for any given ~r, Statement 4.2 holds
for χ~r .

COROLLARY 4.6. Let m<∞ and p≥ 2m+ 5. Let K be a filtration of simplicial com-
plexes satisfying (K2), (D2), (D3), and (D4). Then for any given ~r, Statement 4.2 holds for
χ~r .

PROOF. We prove together Corollaries 4.5 and 4.6. Recall that the Euler characteristic
χ can be written as an alternating (finite) sum of the Betti numbers when (D4) holds. As
mentioned after the statement of the result, since Proposition 2.12 holds for the Betti numbers
in dimensions 0≤ q ≤m under the assumed conditions (see the proofs of Corollaries 4.3 and
4.4), then the same holds for their (alternating) sum, namely the Euler characteristic. The
proof of Theorem 2.13 applies without alteration.

COROLLARY 4.7. Let p > 2. Furthermore, let F ∈ Dγ,r0(C) and 1{F̂n ∈Dγ,r0(C)}→
1 in probability (resp. a.s.). Then Statement 4.2 holds for lNN,k.

PROOF. First, we will show that E[|lNN,k( d
√
n(Yn ∪ {Y ′}))− lNN,k( d

√
nYn)|a] is uni-

formly bounded for G ∈Dγ,r0(C) and Y1, . . . , Yn, Y ′
iid∼G. Denote by Ak+1 the k+1 nearest

neighbors of d
√
nY ′ in d

√
nYn. Denote by Bk the set of points in d

√
nYn for which d

√
nY ′ is

among the k nearest neighbors.
It may be shown that #{Bk} ≤ Cd,k, where Cd,k is a constant depending only on the di-

mension d and k. To show this, consider a cone of angle π/6 whose point lies on d
√
nY ′.

For y1, . . . , yk the k closest points of Bk to d
√
nY ′ within the cone, it follows from ba-

sic geometric arguments that any point lying within the cone, but outside a radius of
max{‖yi − d

√
nY ′‖}ki=1 from d

√
nY ′ must be closer to each of y1, . . . , yk than to d

√
nY ′.

Thus, any cone of this type may contain at most k points of Bn. Since Rd may be covered by
finitely many of these cones, there must exist the required bound Cd,k.
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Now, consider the points of Ak+1 and Bk. Let Rk+1,n := max{‖y− d
√
nY ′‖ : y ∈An}.

For any point y in Bn, the distance to each point of An is at most ‖y− d
√
nY ′‖+Rk+1,n by

the triangle inequality. In this case, the introduction of d
√
nY ′ to the sample may reduce the

contribution to lNN,k from the points in Bn by at most

lNN,k

(
d
√
nYn

)
− lNN,k

(
d
√
n
(
Yn ∪

{
Y ′
}))
≤Cd,kRk+1,n.

Likewise, the contribution of d
√
nY ′ is bounded by

lNN,k

(
d
√
n
(
Yn ∪

{
Y ′
}))
− lNN,k

(
d
√
nYn

)
≤ kRk,n ≤ kRk+1,n.

Thus, we proceed by bounding E[Rak+1,n]. For any G ∈Dγ,r0

E

 ∞∫
r0

P
[
‖Yj − Y ′‖> a

√
r
∣∣ Y ′]n dr

≤ diam (C)
(

1− γr
d

a

0

)n
.

We apply a bound similar to Theorem 7 [9]. In the statement of the referenced theorem,
it is assumed that the above quantity is bounded by CT /n for an appropriate constant CT .
Here, we may improve that to an exponential bound. Consequently, we have

E
[
Rak+1,n

]
≤
(
k+ 1

γ

) a

d

+ diam (C)n
a

d

(
1− γr

d

a

0

)n
+
a(e/(k+ 1))k+1

d(γ)
a

d

∞∫
k+1

e−yyk+
a

d dy.

For any a <∞, this quantity limits to a constant with n→∞, thus admitting a constant
upper bound which holds for all n ∈N, satisfying Statement 2.8, and thus (E1).

The required stabilization properties are first established for a unit-intensity homogeneous
Poisson process via Lemma 6.1 [7]. Let ρ denote the minimal locally-determined radius
of stabilization for lNN,k. Let Pλ denote a homogeneous Poisson process with intensity λ.
By the scaling properties of lNN,k, we have ρ0(Pλ) = ρ0(P1/

d
√
λ) = ρ0(P1)/

d
√
λ. Thus,

P∗[ρ0(Pλ)>L] = P∗[ρ0(P1)>
d
√
λL]. For any λ > 1, P∗[ρ0(Pλ)>L] ≤ P∗[ρ0(P1)>L].

Likewise, for any λ∗ < 1, we may choose Lδ such that P∗[ρ0(P1)>
d
√
λ∗Lδ] ≤ δ. Then

P[ρ0(Pλ)>Lδ]≤ δ for all λ ∈ [λ∗,∞). Stabilization then extends to the binomial sampling
setting via Lemma 2.11 and the translation invariance of lNN,k. We have for any δ > 0 that
there exists an nδ <∞ and L∗δ <∞ such that P∗[ρ d

√
nY ′(

d
√
nYn)>L∗δ ]≤ δ. Both quantities

do not depend specifically on G.
When restricted to C , we have an absolute upper bound of diam (C) d

√
n for the ra-

dius of stabilization, as all points will fall inside of C almost surely. We set Lδ =
max{diam (C) d

√
nδ,L

∗
δ}. Then P∗[ρ d

√
nY ′(

d
√
nYn)>Lδ]≤ δ for all n ∈N, satisfying (S2).

We now have the required pieces to prove bootstrap convergence. Although Cp,M ∩
Dγ,r0(C) is only a subset of Cp,M , the proof and conclusion of Proposition 2.12 still ap-
ply. Likewise, the proof of Theorem 2.13 is easily altered to include the additional condition
1{F̂n ∈Dγ,r0(C)}→ 1. We omit details here.

APPENDIX C: Lp CONSISTENCY OF KERNEL DENSITY ESTIMATORS

In this appendix we discuss the Lp-norm consistency of the kernel density estimator under
very mild conditions. To the best of our knowledge, the exact proof of this result could not
be found in the kernel density literature, though it employs well-known results from proba-
bility theory. In the context of our smoothed bootstrap procedure, the Lp-norm convergence
assumption of the KDE follows as a direct consequence of the following theorem. Notably,
the necessary assumptions for Lp-norm convergence for the KDE are strictly weaker than
those of Theorem 2.13.
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For Q a kernel with
∫
Rd Q(x) dx= 1, define Qh(x) :=Q(x/h)/hd. Let F be a probabil-

ity distribution on Rd with corresponding density f and {Xi}i∈N
iid∼ F . The kernel density

estimator for f with bandwidth h is

f̂n,h(x) :=
1

n

n∑
i=1

Qh(x−Xi)

PROPOSITION C.1. Given p ≥ 2, let ‖Q‖p <∞ and ‖f‖p <∞. Then for any hn such
that limn→∞ hn =∞ and limn→∞ n

p/(2d(p−1))hn =∞∥∥∥f̂n,hn
− f
∥∥∥
p

p→ 0

If further
∑

n∈N 1/(np/2h
d(p−1)
n )<∞∥∥∥f̂n,hn

− f
∥∥∥
p

a.s.→ 0

PROOF. The expectation of f̂n,hn
is Qhn

∗ f , where ∗ denotes the convolution operator.
We expand the Lp-norm using the triangle inequality.

(4)
∥∥∥f̂n,hn

− f
∥∥∥
p
≤
∥∥∥f̂n,hn

−Qhn
∗ f
∥∥∥
p

+ ‖Qhn
∗ f − f‖p

Because
∫
Rd Qhn

(x) dx = 1 and ‖f‖p <∞, the second term goes to 0 with hn→ 0 via
Theorem 8.14 [4]. We focus on the first term of (4).

E
[∫ ∣∣∣f̂n,hn

−Qhn
∗ f
∣∣∣p dλ

]
=

∫
E
[∣∣∣f̂n,hn

−Qhn
∗ f
∣∣∣p]dλ

=
1

np

∫
E

[∣∣∣∣∣
n∑
i=1

Yi

∣∣∣∣∣
p]

dλ

where Yi(x) :=Qhn
(x−Xi)− (Qhn

∗ f)(x) are iid mean-zero random variables.
We symmetrize using independent Rademacher random variables {ei}i∈N, lettingZi(x) :=

eiYi(x). We have that E[|
∑n

i=1 Yi(x)|p]≤ 2pE[|
∑n

i=1Zi(x)|p]. By Corollary 3 [6], there ex-
ists a universal constant C <∞ such that, for any j ∈N

E

[∣∣∣∣∣
n∑
i=1

Zi(x)

∣∣∣∣∣
p]
≤ Cp

(
p

log p

)p
max

{(
nE
[
|Zj(x)|2

]) p

2

, nE[|Zj(x)|p]
}

= Cp
(

p

log p

)p
max

{(
nE
[
|Yj(x)|2

]) p

2

, nE[|Yj(x)|p]
}

≤ Cp
(

p

log p

)p
max

{
n

p

2 E[|Yj(x)|p], nE[|Yj(x)|p]
}

= Cp
(

p

log p

)p
n

p

2 E[|Yj(x)|p].

Then

E
[∫ ∣∣∣f̂n,hn

−Qhn
∗ f
∣∣∣p dλ

]
≤ 2pCp

n
p

2

(
p

log p

)p ∫
E[|Yj |p] dλ.
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∫
E[|Yj |p] dλ= E

[∫
|Yj |p dλ

]
=

∫ ∫
|Qhn

(x− y)− (Qhn
∗ f)(x)|pf(y) dxdy

≤ 2p−1
∫ ∫

(|Qhn
(x− y)|p + |(Qhn

∗ f)(x)|p)f(y) dxdy

= 2p−1
(
‖Qhn

‖pp + ‖Qhn
∗ f‖pp

)
≤2p ‖Qhn

‖pp

=
2p

(hdn)
p−1 ‖Q‖

p
p .

The last inequality follows from Young’s inequality for convolutions, given that ‖f‖1 = 1,
f being a probability density.

E
[∫ ∣∣∣f̂n,hn

−Qhn
∗ f
∣∣∣p dλ

]
≤ 4pCp

(
p

log p

)p ‖Q‖pp(
n

p

2d(p−1)hn

)d(p−1)
As limn→∞ n

p/(2d(p−1))hn =∞ by assumption, this final bound goes to 0 with n→∞.
For any ε > 0, Markov’s inequality gives

P
[∥∥∥f̂n,hn

−Qhn
∗ f
∥∥∥
p
≥ ε
]

= P
[∥∥∥f̂n,hn

−Qhn
∗ f
∥∥∥p
p
≥ εp

]

≤
E
[∥∥∥f̂n,hn

−Qhn
∗ f
∥∥∥p
p

]
εp

As was shown earlier, the right hand side goes to 0, thus ‖f̂n,hn
−Qhn

∗ f‖p
p→ 0.

As ‖Qhn
∗ f − f‖p → 0, an application of Slutsky’s theorem gives the final result. If∑

n∈N 1/(np/2h
d(p−1)
n ) <∞, the almost sure result follows from Borel-Cantelli. For any

α> 1, hn = (log (n)α/np/2−1)
1/d(p−1)

satisfies this criterion.

APPENDIX D: DETAILS OF SIMULATION STUDY

Provided here are the data generating functions, written in pseudocode, for the simulation
study of Section 5. Each generator below corresponds to a distribution F1-F7 in Table 1.
A description is included, explaining each case in more detail. In all of the following, Sd−1
denotes the unit sphere in Rd,Bz(r) the ball with radius r around z, and Unif (S) the uniform
distribution on the set S. N (µ,σ2) denotes the normal distribution with mean µ and variance
σ2, and Exp (λ) is the exponential distribution with rate parameter λ. Cauchy(λ) denotes the
Cauchy distribution with scale parameter λ, and (·, ·) is used to show vector concatenation.
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Generator 1:

1: θ ∼Unif (S1)
2: S ∼Unif ({−1,1})
3: R∼Unif ([0,1])

return X = θR.9S

F1 is radially symmetric around the origin, and the radius is such that the random variable is unbounded, and
the L8 norm of the overall density is finite. Furthermore, the density approaches infinity near the origin. This

case is chosen so as to test the assumptions of Corollary 4.3 with regards to the required norm bound.

Generator 2:

1: θ ∼Unif (S1)
2: S ∼Unif ({−1,1})
3: R∼Unif ([0,1])

return X = θR.55S

F2 is radially symmetric around the origin, and the radius is such that the random variable is unbounded. The
L2 norm of the overall density is finite, but the L8 norm is infinite. As with distribution F1, the density

approaches infinity near the origin.

Generator 3:

1: θ ∼Unif (S1)
2: X1,X2

iid∼ N(0, .04)
return θ+ (Y1, Y2).

F3 represents a ring in R2, combined with additive Gaussian noise. The variance parameter is chosen small
enough so that the ring structure is not lost within the additive noise.

Generator 4:

1: θ ∼Unif (B0(1))

2: X1,X2,X3
iid∼ N(0, .01)

return θ+ (Y1, Y2, Y3).

F4 is the uniform distribution on the unit ball in R3, with a small amount of additive noise included to slightly
smooth the boundary at radius 1.
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Generator 5:

1: X ∼Unif (


(0.38741799,0.24263535,0.09535272)
(0.25147839,0.63824409,0.62425101)
(0.73988542,0.80749034,0.84972394)
(0.26811913,0.35911205,0.08316547)
(0.65954757,0.04704809,0.02113341)

)

2: Y1, Y2, Y3
iid∼ Exp(25)

return X + (Y1, Y2, Y3).

F5 consists of 5 clusters, one around each of the provided opints in R3. Exponential noise is included to test the
effects of heavier tails on the final coverage probability. The rate parameter was chosen large enough so that the

5 clusters remain distinct after noise addition.

Generator 6:

1: θ ∼Unif (S2)
2: Y1, . . . , Y5

iid∼ Cauchy (.1)
return (θ,0,0) + (Y1, . . . , Y5)

F6 represents a 2-dimensional unit sphere embedded in a higher dimension R6. We have included additive
Cauchy noise to investigate the effects of very heavy tails.

Generator 7:

1: (θ1, θ2)
iid∼ Unif (S1)

2: S ∼Unif ({−1,1})
3: Y1, . . . , Y10

iid∼ N(0, .04)
return (θ1 + S, θ2,0, . . . ,0) + (Y1, . . . , Y10)

F7 represents a dual ring, or figure-8 embedded in R10. Full-dimensional Gaussian noise is added, with
variance chosen small enough so that the dual rings are not closed upon noise addition. F7 is included to

illustrate the effects of the “curse of dimensionality” expected in higher dimensions.
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